RT Journal Article T1 On a problem of topologies in infinite dimensional holomorphy A1 Martínez Ansemil, José María A1 Taskinen, J. AB The authors solve an interesting open problem concerning the equivalence of the compact-open topology τ0 and the Nachbin ported topology τω on spaces of holomorphic functions. (See, for example, the book by S. Dineen [Complex analysis in locally convex spaces, North-Holland, Amsterdam, 1981; MR0640093 (84b:46050)] for background.) Let H(U) denote the space of complex-valued holomorphic functions on an open subset U of a complex Fréchet-Montel space F. Ansemil and S. Ponte [Arch. Math. (Basel) 51 (1988), no. 1, 65–70; MR0954070 (90a:46109)] showed that these two topologies agree on H(U) for balanced U if and only if, for every natural number n, P(nF) is a Montel space. Using this result, they showed that for balanced open subsets U of certain non-Schwartz, Fréchet-Montel spaces, τ0=τω. Earlier, J. Mujica [J. Funct. Anal. 57 (1984), no. 1, 31–48; MR0744918 (86c:46050)] had shown that τ0=τω for Fréchet-Schwartz spaces. It is not hard to see that the two topologies differ if F is not Montel. The authors' counterexample is the Fréchet-Montel space F of Taskinen [Studia Math. 91 (1988), no. 1, 17–30; MR0957282 (89k:46087)]. The authors observe that the complete symmetric projective tensor product Fs⊗ˆπF contains an isomorphic copy of l1. Consequently, P(2F) cannot be Montel, and the result follows. PB Birkhäuser Verlag SN 0003-889X YR 1990 FD 1990 LK https://hdl.handle.net/20.500.14352/57631 UL https://hdl.handle.net/20.500.14352/57631 LA eng NO Martínez Ansemil, J. M. & Taskinen, J. «On a Problem of Topologies in Infinite Dimensional Holomorphy». Archiv Der Mathematik, vol. 54, n.o 1, enero de 1990, pp. 61-64. DOI.org (Crossref), https://doi.org/10.1007/BF01190669. DS Docta Complutense RD 28 abr 2025