%0 Journal Article %A Clemente Barreira, Juan Antonio %A Rezaei, Mohammadreza %A Franco Peláez, Francisco Javier %T Reliability of Error Correction Codes Against Multiple Events by Accumulation %@ 0018-9499 %U https://hdl.handle.net/20.500.14352/65264 %X Modern nanoscale devices with storage capacity typically implement error correction codes (ECCs) in order to cope with the effects of natural radiation. Thus, different state-of-the-art ECC techniques aim at preventing data corruption when different numbers of errors (or bitflips) occur in the same logical memory word. However, even though bit interleaving prevents a single particle (such as a proton or a neutron) from flipping several cells in the same word, it cannot be discarded that two independent events may affect nearby cells in the same word and, therefore, would provoke a multiple bit upset (MBU) or equivalent. This article studies the reliability of various state-of-the-art ECC techniques designed for memories to maintain their data integrity under radiation or any other hazardous conditions, where said event accumulation is likely to occur. For this purpose, a set of easy-to-use equations will be provided to estimate the probability of error occurrence in a memory that implements different ECCs, as a function of the number of accumulated bitflips, size of the memory, and word size. %~