%0 Book Section %T Some results on blow up for semilinear parabolic problems publisher Springer %D 1993 %U 0-387-94068-5 %@ https://hdl.handle.net/20.500.14352/60763 %X The authors describe the asymptotic behavior of blow-up for the semilinear heat equation ut=uxx+f(u) in R×(0,T), with initial data u0(x)>0 in R, where f(u)=up, p>1, or f(u)=eu. A complete description of the types of blow-up patterns and of the corresponding blow-up final-time profiles is given. In the rescaled variables, both are governed by the structure of the Hermite polynomials H2m(y). The H2-behavior is shown to be stable and generic. The existence of H4-behavior is proved. A nontrivial blow-up pattern with a blow-up set of nonzero measure is constructed. Similar results for the absorption equation ut=uxx−up, 0<p<1, are discussed. %~