RT Journal Article T1 Electronic and magnetic reconstructions in La_(0.7)Sr_(0.3)MnO_(3)/SrTiO_(3) heterostructures: a case of enhanced interlayer coupling controlled by the interface A1 Varela del Arco, María A1 Nemes, Norbert Marcel A1 Rivera Calzada, Alberto Carlos A1 León Yebra, Carlos A1 Santamaría Sánchez-Barriga, Jacobo AB We report on the magnetic coupling of La_(0.7)Sr_(0.3)MnO_(3) layers through SrTiO_(3) spacers in La_(0.7)Sr_(0.3)MnO_(3)/SrTiO_(3) epitaxial heterostructures. Combined aberration-corrected microscopy and electron-energy-loss spectroscopy evidence charge transfer to the empty conduction band of the titanate. Ti d electrons interact via superexchange with Mn, giving rise to a Ti magnetic moment as demonstrated by x-ray magnetic circular dichroism. This induced magnetic moment in the SrTiO_(3) controls the bulk magnetic and transport properties of the superlattices when the titanate layer thickness is below 1 nm. PB American Physical Society SN 0031-9007 YR 2011 FD 2011-04-08 LK https://hdl.handle.net/20.500.14352/44567 UL https://hdl.handle.net/20.500.14352/44567 LA eng NO [1] J. Park, et al., Nature (London), 392, 794 (1998).[2] V. García, et al., Phys. Rev. B, 69, 052403 (2004).[3] M. Bowen, et al., Appl. Phys. Lett., 82, 233 (2003).[4] H. Yamada, et al., Science, 305, 646 (2004).[5] M. Izumi, et al., Phys. Rev. B, 64, 064429 (2001).[6] H. Yamada, et al., Appl. Phys. Lett., 89, 052506 (2006).[7] A. Tebano, et al., Phys. Rev. Lett., 100, 137401 (2008).[8] Y. Tokura, N. Nagaosa, Science, 288, 462 (2000).[9] S. Okamoto, A. Millis, Nature (London), 428, 630 (2004).[10] J. Mannhart, D. Schlom, Science, 327, 1607 (2010).[11] J. B. Goodenough, Phys. Rev., 100, 564 (1955).[12] J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959).[13] K. Ueda, H. Tabata, T. Kawai, Science, 280, 1064 (1998).[14] J. Chakhalian, et al., Nature Phys., 2, 244 (2006).[15] J. Chakhalian, et al., Science, 318, 1114 (2007).[16] P. Yu ,et al., Phys. Rev. Lett., 105, 027201 (2010).[17] J. García-Barriocanal, et al., Nature Commun., 1, 82 (2010).[18] See supplemental material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.106.147205 for structural characterization by x-ray diffraction and scanning transmission electron microscopy and additional XMCD measurements.[19] J. García-Barriocanal, et al., Adv. Mater., 22, 627 (2010).[20] J. Maurice, et al., Philos. Mag., 86, 2127 (2006).[21] M. Varela, et al., Phys. Rev. B, 79, 085117 (2009).[22] J. J. Kavich, et al., Phys. Rev. B, 76, 014410 (2007).[23] C. Chen, et al., Phys. Rev. Lett., 75, 152 (1995).[24] C. Piamonteze, P. Miedema, F. M. F. de Groot, Phys. Rev. B, 80, 184410 (2009).[25] S. Okamoto, Phys. Rev. B, 82, 024427 (2010).[26] G. Herranz, et al., Phys. Rev. Lett., 96, 027207 (2006). NO © 2011 American Physical Society. Este artículo está firmado por 13 autores. Work at UCM was supported by Spanish MICINN Grant No. MAT 2008 06517, Consolider Ingenio CSD2009- 00013 (IMAGINE), and CAM S2009-MAT 1756 (PHAMA). Work at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. M. V. acknowledges ERC starting Grant No. 239739 STEMOX. NO Spanish MICINN NO CAM NO Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy NO ERC DS Docta Complutense RD 30 abr 2024