RT Journal Article T1 Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? A1 Schilling, Kurt G. A1 Rheault, François A1 Petit, Laurent A1 Hansen, Colin B. A1 Nath, Vishwesh A1 Yeh, Fang-Cheng A1 Girard, Gabriel A1 Barakovic, Muhamed A1 Rafael-Patino, Jonathan A1 Yu, Thomas A1 Fischi-Gomez, Elda A1 Pizzolato, Marco A1 Ocampo-Pineda, Mario A1 Schiavi, Simona A1 Canales-Rodríguez, Erick J. A1 Daducci, Alessandro A1 Granziera, Cristina A1 Innocenti, Giorgio A1 Thiran, Jean-Philippe A1 Mancini, Laura A1 Wastling, Stephen A1 Cocozza, Sirio A1 Petracca, Maria A1 Pontillo, Giuseppe A1 Mancini, Matteo A1 Vos, Sjoerd B. A1 Vakharia, Vejay N. A1 Duncan, John S. A1 Melero Carrasco, Helena A1 Manzanedo, Lidia A1 Sanz-Morales, Emilio A1 Peña-Melián, Ángel A1 Calamante, Fernando A1 Attyé, Arnaud A1 Cabeen, Ryan P. A1 Korobova, Laura A1 Toga, Arthur W. A1 Vijayakumari, Anupa Ambili A1 Parker, Drew A1 Verma, Ragini A1 Radwan, Ahmed A1 Sunaert, Stefan A1 Emsell, Louise A1 De Luca, Alberto A1 Leemans, Alexander A1 Bajada, Claude J. A1 Haroon, Hamied A1 Azadbakht, Hojjatollah A1 Chamberland, Maxime A1 Genc, Sila A1 Tax, Chantal M.W. A1 Yeh, Ping-Hong A1 Srikanchana, Rujirutana A1 Mcknight, Colin D. A1 Yang, Joseph Yuan-Mou A1 Chen, Jian A1 Kelly, Claire E. A1 Yeh, Chun-Hung A1 Cochereau, Jerome A1 Maller, Jerome J. A1 Welton, Thomas A1 Almairac, Fabien A1 Seunarine, Kiran K A1 Clark, Chris A. A1 Zhang, Fan A1 Makris, Nikos A1 Golby, Alexandra A1 Rathi, Yogesh A1 O'Donnell, Lauren J. A1 Xia, Yihao A1 Aydogan, Dogu Baran A1 Shi, Yonggang A1 Guerreiro Fernandes, Francisco A1 Raemaekers, Mathijs A1 Warrington, Shaun A1 Michielse, Stijn A1 Ramírez-Manzanares, Alonso A1 Concha, Luis A1 Aranda, Ramón A1 Rivera Meraz, Mariano A1 Lerma-Usabiaga, Garikoitz A1 Roitman, Lucas A1 Fekonja, Lucius S. A1 Calarco, Navona A1 Joseph, Michael A1 Nakua, Hajer A1 Voineskos, Aristotle N. A1 Karan, Philippe A1 Grenier, Gabrielle A1 Legarreta, Jon Haitz A1 Adluru, Nagesh A1 Nair, Veena A. A1 Prabhakaran, Vivek A1 Alexander, Andrew L. A1 Kamagata, Koji A1 Saito, Yuya A1 Uchida, Wataru A1 Andica, Christina A1 Abe, Masahiro A1 Bayrak, Roza G. A1 Gandini Wheeler-Kingshott, Claudia A.M. A1 D'Angelo, Egidio A1 Palesi, Fulvia A1 Savini, Giovanni A1 Rolandi, Nicolò A1 Guevara, Pamela A1 Houenou, Josselin A1 López-López, Narciso A1 Mangin, Jean-François A1 Poupon, Cyril A1 Claudio Román, Claudio A1 Vázquez, Andrea A1 Maffei, Chiara A1 Arantes, Mavilde A1 Andrade, José Paulo A1 Silva, Susana Maria A1 Calhoun, Vince D. A1 Caverzasi, Eduardo A1 Sacco, Simone A1 Lauricella, Michael A1 Pestilli, Franco A1 Daniel Bullock, Daniel A1 Zhan, Yang A1 Brignoni-Perez, Edith A1 Lebel, Catherine A1 Reynolds, Jess E A1 Nestrasil, Igor A1 Labounek, René A1 Lenglet, Christophe A1 Paulson, Amy A1 Aulicka, Stefania A1 Heilbronner, Sarah R. A1 Heuer, Katja A1 Chandio, Bramsh Qamar A1 Guaje, Javier A1 Tang, Wei A1 Garyfallidis, Eleftherios A1 Raja, Rajikha A1 Anderson, Adam W. A1 Landman, Bennett A. A1 Descoteaux, Maxime AB White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process PB Elsevier SN 1053-8119 YR 2021 FD 2021-08-22 LK https://hdl.handle.net/20.500.14352/99906 UL https://hdl.handle.net/20.500.14352/99906 LA eng DS Docta Complutense RD 20 jul 2024