RT Journal Article T1 Geometric characterizations of p-Poincaré inequalities in the metric setting A1 Durand-Cartagena, Estibalitz A1 Jaramillo Aguado, Jesús Ángel A1 Shanmugalingam, Nageswari AB We prove that a locally complete metric space endowed with a doubling measure satisfies an infinity-Poincare inequality if and only if given a null set, every two points can be joined by a quasiconvex curve which "almost avoids" that set. As an application, we characterize doubling measures on R satisfying an infinity-Poincare inequality. For Ahlfors Q-regular spaces, we obtain a characterization of p-Poincare inequality for p > Q in terms of the p-modulus of quasiconvex curves connecting pairs of points in the space. A related characterization is given for the case Q - 1 < p <= Q. PB Universitat Aut�noma de Barcelona SN 0214-1493 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/22979 UL https://hdl.handle.net/20.500.14352/22979 LA spa NO En el año 2013 se publicó el preprint en Report nº 15, el Pdf se puede ver en este registro. NO NSF DS Docta Complutense RD 18 abr 2025