RT Journal Article T1 Well posedness of an integrodifferential kinetic model of Fokker-Planck type for angiogenesis. A1 Carpio Rodríguez, Ana María A1 Duro, Gema AB Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals andcompactness results for this type of kinetic and parabolic operators PB Amsterdam Elsevier Science 2000 SN 1468-1218 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24466 UL https://hdl.handle.net/20.500.14352/24466 LA eng NO Carpio Rodríguez, A. M. & Duro, G. «Well Posedness of an Integrodifferential Kinetic Model of Fokker–Planck Type for Angiogenesis». Nonlinear Analysis: Real World Applications, vol. 30, agosto de 2016, pp. 184-212. DOI.org (Crossref), https://doi.org/10.1016/j.nonrwa.2016.01.002. NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 9 abr 2025