RT Journal Article T1 Thermoelectric Power of Ion Exchange Membrane Cells Relevant to Reverse Electrodialysis Plants A1 Kristiansen, Kim R. A1 Barragán García, Vicenta María A1 Kjelstrup, Signe AB A thermoelectric cell is designed and experiments are carried out in order to measure Seebeck coefficients of ion exchange membranes at different constant concentrations of NaCl in water. The purpose of the investigation is to explore how a temperature gradient may be applied to increase the efficiency of saline power plants, in particular, of the process of reverse electrodialysis (RED). To evaluate measurements and RED applications, we derive an expression for the thermoelectric potential for a cell with a single membrane and for a RED unit cell. The Seebeck coefficient is interpreted in terms of the Peltier heat of the cell, and further expressed in terms of transported entropies. We find the Seebeck coefficient of the cell, after correcting for temperature polarization, by gradually increasing the membrane thickness. The contribution to the Seebeck coefficient from the membrane varied between 1.41 and 0.98 mV/K in FUMASEP FKS-PET-75 cation exchange membranes, and between 0.56 and 0.48 mV/K in FUMASEP FAD-PET-75 anion exchange membranes. The precision in the results is 1%, for NaCl concentrations between 0.03 and 0.60 mol/kg. Measurements on the RED unit cell with water samples taken from realistic fresh- and salt-water sources confirmed that a temperature difference has a significant effect, increasing the emf by 1.3% per kelvin of temperature difference. PB Amer Physical Soc SN 2331-7019 YR 2019 FD 2019-04-12 LK https://hdl.handle.net/20.500.14352/13394 UL https://hdl.handle.net/20.500.14352/13394 LA eng NO The authors are grateful to the Research Council of Norway through its Centers of Excellence funding scheme, project number 262644, PoreLab. Anders Granli Haraldsen is thanked for his contribution to the RED cell measurements. NO Research Council of Norway through its Centers of Excellence funding scheme, PoreLab DS Docta Complutense RD 8 may 2024