RT Journal Article T1 Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors A1 Pacheco, Marta A1 Jurado-Sánchez, Beatriz A1 Escarpa, Alberto AB Food poisoning caused by bacteria is a major cause of disease and death worldwide. Herein we describe the use of Janus micromotors as mobile sensors for the detection of toxins released by enterobacteria as indicators of food contamination. The micromotors are prepared by a Pickering emulsion approach and rely on the simultaneous encapsulation of platinum nanoparticles for enhanced bubble-propulsion and receptor-functionalized quantum dots (QDs) for selective binding with the 3-deoxy-d-manno-oct-2-ulosonic acid target in the endotoxin molecule. Lipopolysaccharides (LPS) from Salmonella enterica were used as target endotoxins, which upon interaction with the QDs induce a rapid quenching of the native fluorescence of the micromotors in a concentration-dependent manner. The micromotor assay can readily detect concentrations as low as 0.07 ng mL–1 of endotoxin, which is far below the level considered toxic to humans (275 μg mL–1). Micromotors have been successfully applied for the detection of Salmonella toxin in food samples in 15 min compared with several hours required by the existing Gold Standard method. Such ultrafast and reliable approach holds considerable promise for food contamination screening while awaiting the results of bacterial cultures in a myriad of food safety and security defense applications. PB American Chemical Society SN 0003-2700 YR 2018 FD 2018-01-27 LK https://hdl.handle.net/20.500.14352/93654 UL https://hdl.handle.net/20.500.14352/93654 LA eng NO M. Pacheco, B. Jurado Sánchez, A. Escarpa*. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Analytical Chemistry, 90 (2018), 2912-2917. NO University of Alcala NO Spanish Ministry of Education NO Spanish Ministry of Economy and Competitiveness NO NANOAVANSENS DS Docta Complutense RD 4 abr 2025