%0 Journal Article %A Merino-Caviedes, Susana et al. %A Filgueiras-Rama, David %A Pérez Villacastín Domínguez, Julián %A Pérez Castellano, Nicasio %T Time-efficient three-dimensional transmural scar assessment provides relevant substrate characterization for ventricular tachycardia features and long-term recurrences in ischemic cardiomyopathy %D 2021 %@ 2045-2322 %U https://hdl.handle.net/20.500.14352/100542 %X Delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging requires novel and time-efficient approaches to characterize the myocardial substrate associated with ventricular arrhythmia in patients with ischemic cardiomyopathy. Using a translational approach in pigs and patients with established myocardial infarction, we tested and validated a novel 3D methodology to assess ventricular scar using custom transmural criteria and a semiautomatic approach to obtain transmural scar maps in ventricular models reconstructed from both 3D-acquired and 3D-upsampled-2D-acquired LGE-CMR images. The results showed that 3D-upsampled models from 2D LGE-CMR images provided a time-efficient alternative to 3D-acquired sequences to assess the myocardial substrate associated with ischemic cardiomyopathy. Scar assessment from 2D-LGE-CMR sequences using 3D-upsampled models was superior to conventional 2D assessment to identify scar sizes associated with the cycle length of spontaneous ventricular tachycardia episodes and long-term ventricular tachycardia recurrences after catheter ablation. This novel methodology may represent an efficient approach in clinical practice after manual or automatic segmentation of myocardial borders in a small number of conventional 2D LGE-CMR slices and automatic scar detection. %~