RT Report T1 Ten Things You Should Know About the Dynamic Conditional Correlation Representation A1 Caporin, Massimiliano A1 McAleer, Michael AB The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the following: DCC represents the dynamic conditional covariances of the standardized residuals, and hence does not yield dynamic conditional correlations; DCC is stated rather than derived; DCC has no moments; DCC does not have testable regularity conditions; DCC yields inconsistent two step estimators; DCC has no asymptotic properties; DCC is not a special case of GARCC, which has testable regularity conditions and standard asymptotic properties; DCC is not dynamic empirically as the effect of news is typically extremely small; DCC cannot be distinguished empirically from diagonal BEKK in small systems; and DCC may be a useful filter or a diagnostic check, but it is not a model. YR 2013 FD 2013-06 LK https://hdl.handle.net/20.500.14352/41489 UL https://hdl.handle.net/20.500.14352/41489 LA eng NO Revised: June 2013The authors most are grateful to two referees for very helpful comments and suggestions. For financial support, the second author wishes to acknowledge the Australian Research Council, National Science Council, Taiwan, and the Japan Society for the Promotion of Science. An earlier version of this paper was distributed as “Ten Things You Should Know About DCC”. DS Docta Complutense RD 9 abr 2025