RT Journal Article T1 Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation A1 Izquierdo Barba, Isabel A1 García Martín, José Miguel A1 Álvarez, Rafael A1 Palmero, Alberto A1 Esteban, Jaime A1 Pérez-Jorge Peremarch, María de la Concepción A1 Arcos Navarrete, Daniel A1 Vallet Regí, María Dulce Nombre AB Bacterial colonization and biofilm formation on orthopedic implants is one of the worst scenarios in orthopedic surgery, in terms of both patient prognosis and healthcare costs. Tailoring the surfaces of implants at the nanoscale to actively promote bone bonding while avoiding bacterial colonization represents an interesting challenge to achieving better clinical outcomes. Herein, a Ti6Al4V alloy of medical grade has been coated with Ti nanostructures employing the glancing angle deposition technique by magnetron sputtering. The resulting surfaces have a high density of nanocolumnar structures, which exhibit strongly impaired bacterial adhesion that inhibits biofilm formation, while osteoblasts exhibit good cell response with similar behavior to the initial substrates. These results are discussed on the basis of a ‘‘lotus leaf effect’’ induced by the surface nanostructures and the different sizes and biological characteristics of osteoblasts and Staphylococcus aureus. PB Elsevier SN 1742-7061 YR 2015 FD 2015-03-15 LK https://hdl.handle.net/20.500.14352/24049 UL https://hdl.handle.net/20.500.14352/24049 LA eng NO Ministerio de Ciencia e Innovación (MICINN) NO Agening Network of Excellence NO Ministerio de Ciencia y Competitividad (MINECO) NO Junta de Andalucía DS Docta Complutense RD 8 abr 2025