%0 Journal Article %A Bertoluzza, Carlo %A Miranda Menéndez, Pedro %A Gil Álvarez, Pedro %T A generalization of local divergence measures %D 2005 %@ 0888-613X %U https://hdl.handle.net/20.500.14352/50189 %X In this paper we propose a generalization of the concept of the local property for divergence measures. These new measures will be called g-local divergence measures, and we study some of their properties. Once this family is defined, a characterization based on Ling's theorem is given. From this result, we obtain the general form of g-local divergence measures as a function of the divergence in each element of the reference set; this study is divided in three parts according to the cardinality of the reference set: finite, infinite countable or non-countable. Finally, we study the problem of componible divergence measures as a dual concept of g-local divergence measures. %~