RT Journal Article T1 Existence of global-solutions to some nonlinear dissipative wave-equations A1 Carpio Rodríguez, Ana María AB Let Omega be a smooth bounded domain. We prove existence of global solutions, i.e., solutions defined for all t epsilon R, for dissipative wave equations of the form: u'' - Delta u + \u'\(p-1) u' = 0 in Omega x (-infinity, infinity), p > 1, with Dirichlet boundary conditions. When Omega is unbounded the same existence result holds for p greater than or equal to 2. PB Gauthier-Villars SN 0021-7824 YR 1994 FD 1994 LK https://hdl.handle.net/20.500.14352/57231 UL https://hdl.handle.net/20.500.14352/57231 LA eng DS Docta Complutense RD 7 jun 2025