RT Journal Article T1 Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. A1 Serrano Pedraza, Ignacio A1 Romero Ferreiro, Verónica A1 Read, Jenny C A A1 Diéguez Risco, Teresa A1 Bagney, Alexandra A1 Caballero González, Montserrat A1 Rodríguez Torresano, Javier A1 Rodríguez Jiménez, Roberto AB Visual perception in schizophrenia is attracting a broad interest given the deep knowledge that we have about the visual system in healthy populations. One example is the class of effects known collectively as visual surround suppression. For example, the visibility of a grating located in the visual periphery is impaired by the presence of a surrounding grating of the same spatial frequency and orientation. Previous studies have suggested abnormal visual surround suppression in patients with schizophrenia. Given that schizophrenia patients have cortical alterations including hypofunction of NMDA receptors and reduced concentration of GABA neurotransmitter, which affect lateral inhibitory connections, then they should be relatively better than controls at detecting visual stimuli that are usually suppressed. We tested this hypothesis by measuring contrast detection thresholds using a new stimulus configuration. We tested two groups: 21 schizophrenia patients and 24 healthy subjects. Thresholds were obtained using Bayesian staircases in a four-alternative forced-choice detection task where the target was a grating within a 3∘ Butterworth window that appeared in one of four possible positions at 5∘ eccentricity. We compared three conditions, (a) target with no-surround, (b) target embedded within a surrounding grating of 20∘ diameter and 25% contrast with same spatial frequency and orthogonal orientation, and (c) target embedded within a surrounding grating with parallel (same) orientation. Previous results with healthy populations have shown that contrast thresholds are lower for orthogonal and no-surround (NS) conditions than for parallel surround (PS). The log-ratios between parallel and NS thresholds are used as an index quantifying visual surround suppression. Patients performed poorly compared to controls in the NS and orthogonal-surround conditions. However, they performed as well as controls when the surround was parallel, resulting in significantly lower suppression indices in patients. To examine whether the difference in suppression was driven by the lower NS thresholds for controls, we examined a matched subgroup of controls and patients, selected to have similar thresholds in the NS condition. Patients performed significantly better in the PS condition than controls. This analysis therefore indicates that a PS raised contrast thresholds less in patients than in controls. Our results support the hypothesis that inhibitory connections in early visual cortex are impaired in schizophrenia patients. PB Frontiers Research Foundation SN 1664-1078 YR 2014 FD 2014 LK https://hdl.handle.net/20.500.14352/35116 UL https://hdl.handle.net/20.500.14352/35116 LA spa NO Anderson, A. J. (2003). Utility of a dynamic termination criterion in the ZEST adaptive threshold method. Vision Res. 43, 165–170. doi: 10.1016/S0042- 6989(02)00396-6 Andreasen, N. C., Pressler, M., Nopoulos, P., Miller, D., and Ho, B. C. (2010). Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol. Psychiatry 67, 255–262. doi: 10.1016/j.biopsych.2009.08.040 Angelucci, A., and Bressloff, P. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extraclassical receptive field surround of primate V1 neurons. Prog. Brain Res. 154, 93–120. doi: 10.1016/S0079-6123(06)54005-1 Angelucci, A., Levitt, J., and Lund, J. (2002). Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain Res. 136, 373–388. doi: 10.1016/S0079- 6123(02)36031-X APA. (1994). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV, 4th Edn. Washington, DC: American Psychiatric Association. Barch, D., Carter, C., Dakin, S., Gold, J., Luck, S., Macdonald, A. III, et al. (2012). The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophr. Bull. 38, 135–143. doi: 10.1093/schbul/ sbr154 Blakemore, C., and Tobin, E. A. (1972). Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp. Brain Res. 15, 439–440. doi: 10.1007/BF00234129 Bonin, V., Mante, V., and Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 25, 10844–10856. doi: 10.1523/JNEUROSCI.3562-05.2005 Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi: 10.1163/156856897X00357 Butler, P., Silverstein, S. M., and Dakin, S. (2008). Visual perception and its impairment in schizophrenia. Biol. Psychiatry 64, 40–47. doi: 10.1016/j.biopsych.2008.03.023 Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., et al. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry 62, 495–504. doi: 10.1001/archpsyc.62.5.495 Cannon, M. W., and Fullenkamp, S. C. (1991). Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Res. 31, 1985–1998. doi: 10.1016/0042- 6989(91)90193-9 Cavanaugh, J. R., Bair, W., and Movshon, J. A. (2002). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88, 2547–2556. doi: 10.1152/jn.00693.2001 Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophr. Bull. 37, 709–715. doi: 10.1093/schbul/ sbr020 Chen, Y., Norton, D., and Ongur, D. (2008). Altered center-surround motion inhibition in schizophrenia. Biol. Psychiatry 64, 74–77. doi: 10.1016/j.biopsych.2007.11.017 Dakin, S. C., Carlin, P., and Hemsley, D. (2005). Weak suppression of visual context in chronic schizophrenia. Curr. Biol. 15, 822–824. doi: 10.1016/j.cub.2005.10.015 Daw, N. W., Stein, P. S. G., and Fox, K. (1993). The role of NMDA receptors in information processing. Annu. Rev. Neurosci. 16, 207–222. doi: 10.1146/annurev.ne.16.030193.001231 DeAngelis, G. C., Freeman, R. D., and Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex. J. Neurophysiol. 71, 347–374. Emerson, P. L. (1986). Observations on maximum-likelihood and Bayesian methods of forced-choice sequential threshold estimation. Percept. Psychophys. 39, 151– 153. doi: 10.3758/BF03211498 First, M. G., Spitzer, R. L., Gibbon, M., and Williams, J. B. (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute. García-Pérez, M. A. (1998). Forced-choice staircases with fixed steps sizes: asymptotic and small-sample properties. Vision Res. 38, 1861–1881. doi: 10.1016/S0042-6989(97)00340-4 González, R. C., and Wintz, P. (1987). Digital Image Processing 2nd Edn. Reading, MA: Addison-Wesley. Jäkel, F., and Wichmann, F. A. (2006). Spatial four-alternative forced-choiced method is the preferred psychophysical method for naïve observers. J. Vis. 6, 1307–1322. doi: 10.1167/6.11.13 Kantrowitz, J. T., Butler, P. D., Schecter, I., Silipo, G., and Javitt, D. C. (2009). Seeing the world dimly: the impact of early visual deficits on visual experience in schizophrenia. Schizophr. Bull. 35, 1085–1094. doi: 10.1093/schbul/sbp100 Kay, S. R., Fishbein, A., and Olper, L. A. (1987). The positive and negative syndrome scales. Schizophr. Bull. 13, 261–276. doi: 10.1093/schbul/13.2.261 Kéri, S., Antal, A., Szekeres, G., Benedek, G., and Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 14, 190–196. doi: 10.1176/appi.neuropsych.14.2.190 Kéri, S., Kelemen, O., Benedek, G., and Janka, Z. (2005). Lateral interactions in the visual cortex of patients with schizophrenia and bipolar disorder. Psychol. Med. 35, 1043–1051. doi: 10.1017/S0033291705004381 Kim, J., Park, S., and Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: a behavioral and fMRI study. PLoS ONE 6:e19971. doi: 10.1371/journal.pone.0019971 King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., and Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vision Res. 34, 885–912. doi: 10.1016/0042-6989(94)90039-6 Kleiner, M., Brainard, D. H., and Pelli, D. G. (2007). What’s new in Psychotoolbox-3? Perception 36 (ECVP Abstract Supplement). Kraehenmann, R.,Vollenweider, F. X., Seifritz, E., and Kometer,M. (2012). Crowding Deficits in the Visual Periphery of Schizophrenia Patients. PLoS ONE 7:e45884. doi: 10.1371/journal.pone.0045884 Lev, M., and Polat, U. (2011). Collinear facilitation and suppression at the periphery. Vision Res. 52, 2488–2498. doi: 10.1016/j.visres.2011.10.008 Lewis, D. A., and Lieberman, J. A. (2000). Catching up on schizophrenia: natural history and neurobiology. Neuron 28, 325–334. doi: 10.1016/S0896- 6273(00)00111-2 Moghaddam, B. (2003). Bringing order to the glutamate chaos in schizophrenia. Neuron 28, 325–334. doi: 10.1016/S0896-6273(03)00757-8 Must, A., Janka, Z., Benedek, G., and Keri, S. (2004). Reduced facilitation effect of collinear flankers on contrast detection reveals impaired lateral connectivity in the visual cortex of schizophrenia patients. Neurosci. Lett. 357, 131–134. doi: 10.1016/j.neulet.2003.12.046 Notredame, C.-E., Pins, D., Deneve, S., and Jardri, R. (2014). What visual illusions teach us about schizophrenia. Front. Integr. Neurosci. 8:63. doi: 10.3389/fnint.2014.00063 Olney, J., and Farber, N. (1995). Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 52, 998–1007. doi: 10.1001/archpsyc.1995.03950240016004 Olzak, L. A., and Laurinen, P. I. (1999). Multiple gain control processes in contrast-contrast phenomena. Vision Res. 39, 3983–3987. doi: 10.1016/S0042- 6989(99)00131-5 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442. doi: 10.1163/156856897X00366 Peralta,V., and Cuesta, M. J. (1994). Validación de la escala de los síndromes positivo y negativo (PANSS) en una muestra de esquizofrénicos españoles. Actas Luso-Esp Neurol. Psiquiatr. 22, 171–177. Petrov, Y., Carandini, M., and Mckee, S. (2005). Two distinct mechanisms of suppression in human vision. J. Neurosci. 25, 8704–8707. doi: 10.1523/JNEUROSCI.2871-05.2005 Petrov, Y., and McKee, S. P. (2006). The effect of spatial configuration on surround suppression of contrast sensitivity. J. Vis. 9, 224–238. Robol, V., Tibber, M., Anderson, E., Bobin, T., Carlin, P., Shergill, S. S., et al. (2013). Reduced crowding and poor contour detection in schizophrenia are consistent with weak surround inhibition. PLoS ONE 8:e60951. doi: 10.1371/journal.pone.0060951 Rokem, A., Yoon, J. H., Ooms, R. E., Maddock, R. J., Minzenberg, M., and Silver, M. A. (2011). Broader visual orientation tuning in patients with schizophrenia. Front. Hum. Neurosci. 5:127. doi: 10.3389/fnhum.2011.00127 Ruxton, G. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 17, 688–690. doi: 10.1093/beheco/ark016 Schechter, I., Butler, P., Jalbrzikowski, M., Pasternak, R., Seperstein, A. M., and Javitt, D. C. (2006). A new dimensión of sensory dysfunction: stereopsis deficits in schizophrenia. Biol. Psychiatry 60, 1282–1284. doi: 10.1016/j.biopsych.2006.03.064 Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psychiatry 52, 805–818. doi: 10.1001/archpsyc.1995.03950220015005 Self, M. W., Lorteije, J. A. M., Vangeneugden, J., Van Beest, E. H., Grigore, M. E., Levelt, C. N., et al. (2014). Orientation-tuned surround suppression in mouse visual cortex. J. Neurosci. 34, 9290–9304. doi: 10.1523/JNEUROSCI.5051-13.2014 Serrano-Pedraza, I., Grady, J. P., and Read, J. C. A. (2012). Spatial frequency bandwidth of surround suppression tuning curves. J. Vis. 12, 1–11. doi: 10.1167/12.6.24 Serrano-Pedraza, I., Romero-Ferreiro, V., Read, J. C. A., Diéguez-Risco, T., Bagney, A., Caballero-González, M., et al. (2014). Reduced visual orientation-surround suppression in schizophrenia shown by measuring contrast detection thresholds. J. Vis. 14:1406. doi: 10.1167/14.10.1406Sierra-Vazquez, V., Serrano-Pedraza, I., and Luna, D. (2006). The effect of spatialfrequency filtering on the visual processing of global structure. Perception 35, 1583–1609. doi: 10.1068/p5364 Skottun, B., and Skoyles, J. (2007). Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res. 47, 2923–2933. doi: 10.1016/j.visres.2007. 07.016 Slaghuis, W. L. (1998). Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J. Abnorm. Psychol. 107, 49–62. doi: 10.1037/0021-843X.107.1.49 Smith, M. (2006). Surround suppression in the early visual system. J. Neurosci. 26, 3624–3625. doi: 10.1523/JNEUROSCI.0236-06.2006 Solomon, S. G.,White, A. J. R., and Martin, P. R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J. Neurosci. 22, 338–349. Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., and Blake, R. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. J. Neurosci. 26, 11403–11412. doi: 10.1523/JNEUROSCI.2592-06.2006 Tibber, M., Anderson, E., Bobin, T., Antonova, E., Seabright, A., Wright, B., et al. (2013). Visual surround suppression in schizophrenia. Front. Psychol. 4:88. doi: 10.3389/fpsyg.2013.00088 Tiippana, K., and Näsänen, R. (1999). Spatial-frequency bandwidth of perceived contrast. Vision Res. 39, 3399–3403. doi: 10.1016/S0042-6989(99)00057-7 Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Res. 35, 2503– 2522. doi: 10.1016/0042-6989(95)00016-X Uhlhaas, P. J., and Mishara, A. L. (2007). Perceptual anomalies in schizophrenia: Integrating phenomenology and cognitive neuroscience. Schizophr. Bull. 33, 142– 156. doi: 10.1093/schbul/sbl047 Wassef, A., Bajer, J., and Kochan, L. D. (2003). GABA and schizophrenia: a review of basic science and clinical studies. J. Clin. Psychopharmacol. 23, 601–640. doi: 10.1097/01.jcp.0000095349.32154.a5 Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C., and Lennie, P. (2005). Early and late mechanisms of surround suppression in striate cortex of macaque. J. Neurosci. 25, 11666–11675. doi: 10.1523/JNEUROSCI.3414-05.2005 Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. J. Clin. Psychiatry 64, 663–667. doi: 10.4088/JCP. v64n0607 Yang, E., Tadin, D., Glasser, D. M., Hong, S. W., Blake, R., and Park, S. (2013). Visual context processing in schizophrenia. Clin. Psychol. Sci. 1, 1–11. doi: 10.1177/2167702612464618 Yoon, J. H., Maddock, R. J., Rokem, A., Silver, M. A., Minzenberg, M. J., Ragland, J. D., et al. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J. Neurosci. 30, 3777–3781. doi: 10.1523/JNEUROSCI.6158-09.2010 Yoon, J. H., Rokem, A. S., Silver, M. A., Minzeenberg, M. J., Ursu, S., Ragland, J. D., et al. (2009). Diminished orientation specific surround suppression of visual processing in schizophrenia. Schizophr. Bull. 35, 1078–1084. doi: 10.1093/schbul/sbp064 NO Ministerio de Economía y Competitividad (MINECO) NO Comunidad de Madrid NO Fondo de Investigaciones Sanitarias DS Docta Complutense RD 29 abr 2024