RT Journal Article T1 Two faces of quantum sound A1 Barceló, C. A1 Garay Elizondo, Luis Javier A1 Jannes, G. AB Fluctuations around a Bose-Einstein condensate can be described by means of Bogolubov theory leading to the notion of quasiparticle and antiquasiparticle familiar to nonrelativistic condensed-matter practitioners. On the other hand, we already know that these perturbations evolve according to a relativistic Klein-Gordon equation in the long-wavelength approximation. For shorter wavelengths, we show that this equation acquires nontrivial corrections which modify the Klein-Gordon product. In this approach, quasiparticles can also be defined (up to the standard ambiguities due to observer dependence). We demonstrate that-in the low-energy as well as in the high-energy regimes-both concepts of quasiparticle are actually the same, regardless of the formalism (Bogolubov or Klein-Gordon) used to describe them. These results also apply to any barotropic, inviscid, irrotational fluid, with or without quantum potential. Finally, we illustrate how the quantization of these systems of quasiparticles proceeds by analyzing a stationary configuration containing an acoustic horizon. We show that there are several possible choices of a regular vacuum state, including a regular generalization of the Boulware vacuum. Issues such us Hawking radiation crucially depend on this vacuum choice. PB Amer Physical Soc SN 1550-7998 YR 2010 FD 2010-08-25 LK https://hdl.handle.net/20.500.14352/44530 UL https://hdl.handle.net/20.500.14352/44530 LA eng NO © 2010 The American Physical Society.Financial support was provided by the Spanish MICINN through Projects No. FIS2008-06078-C03-01 and No. FIS2008-06078-C03-03 and Consolider-Ingenio 2010 Program CPAN (CSD2007-00042) and by the Junta de Andalucía through Projects No. FQM2288 and No. FQM219. The authors want to thank S. Finazzi, S. Liberati, G. A. Mena Marugán, and R. Parentani for illuminating discussions. NO Spanish MICINN NO Junta de Andalucia DS Docta Complutense RD 4 abr 2025