RT Journal Article T1 On continuous families of geometric Seifert conemanifold structures A1 Lozano Imízcoz, María Teresa A1 Montesinos Amilibia, José María AB In this paper, dedicated to Prof. Lou Kauffman, we determine the Thurston’s geometry possesed by any Seifert fibered conemanifold structure in a Seifert manifold with orbit space (Formula presented.) and no more than three exceptional fibers, whose singular set, composed by fibers, has at most three components which can include exceptional or general fibers (the total number of exceptional and singular fibers is less than or equal to three). We also give the method to obtain the holonomy of that structure. We apply these results to three families of Seifert manifolds, namely, spherical, Nil manifolds and manifolds obtained by Dehn surgery on a torus knot (Formula presented.). As a consequence we generalize to all torus knots the results obtained in [Geometric conemanifolds structures on (Formula presented.), the result of (Formula presented.) surgery in the left-handed trefoil knot (Formula presented.), J. Knot Theory Ramifications 24(12) (2015), Article ID: 1550057, 38pp., doi: 10.1142/S0218216515500571] for the case of the left handle trefoil knot. We associate a plot to each torus knot for the different geometries, in the spirit of Thurston. PB World Scientific Publishing Co. Pte Ltd SN 02182165 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24692 UL https://hdl.handle.net/20.500.14352/24692 LA eng NO Ministerio de Ciencia e Innovación (MICINN) NO Gobierno de Aragón/Fondo Social Europeo DS Docta Complutense RD 9 abr 2025