RT Journal Article T1 Constructing solutions for a kinetic model of angiogenesis in annular domains A1 Carpio Rodríguez, Ana María A1 Duro, Gema A1 Negreanu Pruna, Mihaela AB We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains. PB Elsevier SN 0307-904X YR 2017 FD 2017-05 LK https://hdl.handle.net/20.500.14352/18799 UL https://hdl.handle.net/20.500.14352/18799 LA eng NO Carpio Rodríguez, A. M., Duro, G. y Negreanu Pruna, M. «Constructing Solutions for a Kinetic Model of Angiogenesis in Annular Domains». Applied Mathematical Modelling, vol. 45, mayo de 2017, pp. 303-22. DOI.org (Crossref), https://doi.org/10.1016/j.apm.2016.12.028. NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 20 abr 2025