RT Journal Article T1 Periodized discrete elasticity models for defects in graphene A1 Carpio Rodríguez, Ana María A1 Bonilla, Luis L. AB The cores of edge dislocations, edge dislocation dipoles, and edge dislocation loops in planar graphene have been studied by means of periodized discrete elasticity models. To build these models, we have found a way to discretize linear elasticity on a planar hexagonal lattice using combinations of difference operators that do not symmetrically involve all the neighbors of an atom. At zero temperature, dynamically stable cores of edge dislocations may be heptagon-pentagon pairs (glide dislocations) or octagons (shuffle dislocations) depending on the choice of initial configuration. Possible cores of edge dislocation dipoles are vacancies, pentagon-octagon-pentagon divacancies, Stone-Wales defects, and 7-5-5-7 defects. While symmetric vacancies, divacancies, and 7-5-5-7 defects are dynamically stable, asymmetric vacancies and 5-7-7-5 Stone-Wales defects seem to be unstable. PB American Physical Society SN 1098-0121 YR 2008 FD 2008 LK https://hdl.handle.net/20.500.14352/49854 UL https://hdl.handle.net/20.500.14352/49854 LA eng NO Carpio Rodríguez, A. M. y Bonilla, L. L. «Periodized Discrete Elasticity Models for Defects in Graphene». Physical Review B, vol. 78, n.o 8, agosto de 2008, p. 085406. DOI.org (Crossref), https://doi.org/10.1103/PhysRevB.78.085406. NO Ministerio de Educación, Formación Profesional y Deportes (España) NO Comunidad de Madrid DS Docta Complutense RD 20 ene 2026