2024-04-25T04:51:48Zhttps://docta.ucm.es/rest/oai/requestoai:docta.ucm.es:20.500.14352/242812023-08-28T17:20:18Zcom_20.500.14352_14col_20.500.14352_15
00925njm 22002777a 4500
dc
Álvarez, Enrique
author
González Martín, Sergio
author
Herrero Valea, Mario
author
Pérez Martín, Carmelo
author
2015-08
The problem of the comological constant appears in a new light in Unimodular Gravity. In particular, the zero momentum piece of the potential (that is, the constant piece independent of the matter fields) does not automatically produce a cosmological constant proportional to it. The aim of this paper is to give some details on a calculation showing that quantum corrections do not renormalize the classical value of this observable.
[1] J.J. van der Bij, H. van Dam and Y.J. Ng, The exchange of massless spin two particles, Physica 116A (1982) 307 [INSPIRE].
[2] E. Álvarez, D. Blas, J. Garriga and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B 756 (2006) 148 [hep-th/0606019] [INSPIRE].
[3] A. Einstein, The principle of relativity, Dover (1952).
[4] G.F.R. Ellis, H. van Elst, J. Murugan and J.-P. Uzan, On the trace-free einstein equations as a viable alternative to general relativity, Class. Quant. Grav. 28 (2011) 225007 [arXiv:1008.1196] [INSPIRE].
[5] S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].
[6] C. Barceló, R. Carballo-Rubio and L.J. Garay, Unimodular gravity and general relativity from graviton self-interactions, Phys. Rev. D 89 (2014) 124019 [arXiv:1401.2941] [INSPIRE].
[7] I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
[8] W. Siegel, Hidden ghosts, Phys. Lett. B 93 (1980) 170 [INSPIRE].
[9] A. Eichhorn, The renormalization group flow of unimodular f(R) gravity, JHEP 04 (2015) 096 [arXiv:1501.05848] [INSPIRE].
[10] I.D. Saltas, UV structure of quantum unimodular gravity, Phys. Rev. D 90 (2014) 124052 [arXiv:1410.6163] [INSPIRE].
[11] L. Smolin, Unimodular loop quantum gravity and the problems of time, Phys. Rev. D 84 (2011) 044047 [arXiv:1008.1759] [INSPIRE].
[12] L. Smolin, The quantization of unimodular gravity and the cosmological constant problems, Phys. Rev. D 80 (2009) 084003 [arXiv:0904.4841] [INSPIRE].
[13] W.G. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048 [INSPIRE].
[14] M. Henneaux and C. Teitelboim, The cosmological constant and general covariance, Phys. Lett. B 222 (1989) 195 [INSPIRE].
[15] E. Álvarez and A.F. Faedo, Unimodular cosmology and the weight of energy, Phys. Rev. D 76 (2007) 064013 [hep-th/0702184] [INSPIRE].
[16] E. Álvarez, A.F. Faedo and J.J. Lopez-Villarejo, Ultraviolet behavior of transverse gravity, JHEP 10 (2008) 023 [arXiv:0807.1293] [INSPIRE].
[17] E. Álvarez and M. Herrero-Valea, No conformal anomaly in unimodular gravity, Phys. Rev. D 87 (2013) 084054 [arXiv:1301.5130] [INSPIRE].
[18] E. Álvarez, M. Herrero-Valea and C.P. Martin, Conformal and non conformal dilaton gravity, JHEP 10 (2014) 115 [arXiv:1404.0806] [INSPIRE].
[19] A.O. Barvinsky and G.A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].
[20] E.S. Fradkin and A.A. Tseytlin, Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories, Nucl. Phys. B 227 (1983) 252 [INSPIRE].
[21] E. Álvarez and A.F. Faedo, Renormalized Kaluza-Klein theories, JHEP 05 (2006) 046 [hep-th/0602150] [INSPIRE].
[22] D.J. Toms, Quadratic divergences and quantum gravitational contributions to gauge coupling constants, Phys. Rev. D 84 (2011) 084016 [INSPIRE].
[23] D.J. Toms, The background-field method and the renormalization of nonabelian gauge theories in curved space-time, Phys. Rev. D 27 (1983) 1803 [INSPIRE].
[24] M.M. Anber and J.F. Donoghue, On the running of the gravitational constant, Phys. Rev. D 85 (2012) 104016 [arXiv:1111.2875] [INSPIRE].
[25] M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].
[26] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].
[27] E. Álvarez and M. Herrero-Valea, Unimodular gravity with external sources, JCAP 01 (2013) 014 [arXiv:1209.6223] [INSPIRE].
[28] J.M. Martín-García, D. Yllanes and R. Portugal, The Invar tensor package: differential invariants of Riemann, Comput. Phys. Commun. 179 (2008) 586 [arXiv:0802.1274] [INSPIRE].
[29] S.M. Christensen and M.J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].
[30] F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].
[31] B. DeWitt, Dynamical theory of groups and fields, Gordon and Breach (1965).
[32] V.P. Gusynin, Seeley-gilkey coefficients for the fourth order operators on a Riemannian manifold, Nucl. Phys. B 333 (1990) 296 [INSPIRE].
[33] D.J. Toms, Renormalization of interacting scalar field theories in curved space-time, Phys. Rev. D 26 (1982) 2713.
1029-8479
10.1007/JHEP08(2015)078
https://hdl.handle.net/20.500.14352/24281
http://dx.doi.org/10.1007/JHEP08(2015)078
http://link.springer.com/
Quantum corrections to unimodular gravity