2024-02-25T22:12:42Zhttps://docta.ucm.es/rest/oai/requestoai:docta.ucm.es:20.500.14352/437032023-08-27T08:59:47Zcom_20.500.14352_14col_20.500.14352_15
00925njm 22002777a 4500
dc
Dobado González, Antonio
author
Llanes Estrada, Felipe José
author
Oller, Jose Antonio
author
2012-01-20
In general relativity, there is a maximum mass allowed for neutron stars that, if exceeded, entails collapse into a black hole. Its precise value depends on details of the nuclear matter equation of state, a subject where much progress has been accomplished thanks to low energy effective theories. The discovery of a two-solar-mass neutron star, near that maximum mass, when analyzed with modern equations of state, implies that Newton's gravitational constant in the star cannot exceed its value on Earth by more than 12% at the 95% confidence level. This significantly extends the gravitational field intensity at which the constant has been constrained at the 10% level.
[1] G. Gillies, Metrologia 24, 1 (1987).
[2] P. J. Mohr and B. N. Taylor, Rev.Mod.Phys. 77, 1 (2005).
[3] M. Kramer, I. H. Stairs, R. Manchester, M. McLaugh-lin, A. Lyne, et al., Science 314, 97 (2006),arXiv:astro-ph/0609417 [astro-ph].
[4] P. B. Demorest et al., Nature 467, 1081 (2011).
[5] D. J. Nice, E. M. Splaver, I. H. Stairs, O. Loehmer, A. Jessner, et al., Astrophys.J. 634, 1242 (2005), arXiv:astro-ph/0508050 [astro-ph].
[6] J. Lattimer and M. Prakash, Astrophys.J. 550, 426 (2001), arXiv:astro-ph/0002232 [astro-ph].
[7] R. C. Tolman, Phys.Rev. 55, 364 (1939).
[8] J. Oppenheimer and G. Volkoff, Phys.Rev. 55, 374 (1939).
[9] K. Hebeler, J. Lattimer, C. Pethick, and A. Schwenk, Phys.Rev.Lett. 105, 161102 (2010), arXiv:1007.1746 [nucl-th].
[10] Y. Zeldovich and I. Novikov, Stars and Relativity (Dover publications, 2011).
[11] A. Lacour, J. A. Oller, and U.-G. Meissner, Annals Phys. 326, 241 (2011), arXiv:0906.2349 [nucl-th].
[12] J. A. Oller, A. Lacour, and U.-G. Meissner, J.Phys.G G37, 015106 (2010), arXiv:0902.1986 [nucl-th].
[13] A. Lacour, J. A. Oller, and U.-G. Meissner, J.Phys.G G37, 125002 (2010), arXiv:1007.2574 [nucl-th].
[14] U.-G. Meissner, J. A. Oller, and A.Wirzba, Annals Phys. 297, 27 (2002), arXiv:nucl-th/0109026 [nucl-th].
[15] A. Akmal, V. Pandharipande, and D. Ravenhall, Phys.Rev. C58, 1804 (1998), 5 arXiv:nucl-th/9804027 [nucl-th].
[16] An additional higher order computation of the sound velocity within the EFT [11] is planned since the excess over the casuality limit from the thermodynamical formula c2 s = @P/@ is only at the 10% level. This has no impact in our current results.
[17] Since the pulsar’s period is measured to be about 3.15 milliseconds, the maximum centripetal acceleration a the Equator is two orders of magnitude smaller than gravity, and we therefore neglect the (naturally) very small oblateness of the star.
[18] A. de la Cruz-Dombriz, A. Dobado, and A. Maroto, Phys.Rev.Lett. 103, 179001 (2009), arXiv:0910.1441 [astro-ph.CO].
[19] Introducing additional, possibly exotic, degrees of reedom cannot stiffen the equation of state beyond causality.
[20] F. J. Llanes-Estrada and G. M. Navarro(2009), to be published in Jour. Astrophys. Space Sci., arXiv:0905.4837 [astro-ph.HE].
[21] A. V. T. B. Datta and D.Bhattacharya, Astrophys.Astr. 16, 375 (1995).
[22] P. R. Chowdhury, PoS NICXI, 175 (2010), arXiv:1105.0080 [nucl-th].
[23] H. Li, X.-L. Luo, Y. Jiang, and H.-S. Zong, Phys.Rev. D83, 025012 (2011), arXiv:1101.1744 [hep-ph].
[24] D.-H. Wen, B.-A. Li, and L.-W. Chen(2011), arXiv:1101.1504 [astro-ph.SR].
[25] F. Ozel, G. Baym, and T. Guver, Phys.Rev. D82, 101301 (2010), arXiv:1002.3153 [astro-ph.HE].
[26] J. M. Lattimer and M. Prakash(2010),arXiv:1012.3208 [astro-ph.SR].
[27] H. Bethe and G. Brown, Astrophys.J. 445, L129 (1995).
[28] K. Kainulainen, V. Reijonen, and D. Sunhede, Phys.Rev. D76, 043503 (2007), arXiv:gr-qc/0611132 [gr-qc].
0556-2813
10.1103/PhysRevC.85.012801
https://hdl.handle.net/20.500.14352/43703
http://prc.aps.org/abstract/PRC/v85/i1/e012801
http://prc.aps.org/
Existence of two-solar-mass neutron star constrains gravitational constant G(N) at strong field