2024-04-13T08:59:00Zhttps://docta.ucm.es/rest/oai/requestoai:docta.ucm.es:20.500.14352/189722023-08-26T03:36:33Zcom_20.500.14352_14col_20.500.14352_15
Docta Complutense
author
Torcal Milla, Francisco José
author
Sánchez Brea, Luis Miguel
2023-06-17T23:53:19Z
2023-06-17T23:53:19Z
2017-05
[1] Picht J. Mess-und prüfmethoden der optischen fertigung, 1. Berlin, Germany:
Akademie-Verlag; 1955.
[2] Flügge J. Einführung in die Messung der optischen Grundgrößen. Karlsruhe,
Germany: G. Braun; 1954.
[3] Dörband B, Gross H, Müller H. Handbook of optical systems. Metrology of optical
components and systems, 5. Weinheim, Germany: John Wiley & Sons; 2012.
[4] Malacara D. Optical shop testing. Wiley series in pure and applied optics. Hoboken,
United States: Wiley; 2007.
[5] Nakano Y, Murata K. Talbot interferometry for measuring the focal length of a lens.
Appl Opt 1985;24:3162–6.
[6] Jin X, Zhang J, Bai J, Hou C, Hou X. Calibration method for high-accuracy
measurement of long focal length with Talbot interferometry. Appl Opt 2012;51:
2407–13.
[7] de Angelis M, de Nicola S, Ferraro P, Finizio A, Pierattini G. Analysis of moire
fringes for measuring the focal length of lenses. Opt Lasers Eng 1998;30:279–86.
[8] Keren KM, Kreske E, Kafri O. Universal method for determining the focal length of
optical systems by moire deflectometry. Appl Opt 1998;27(8):1383–9.
[9] Trivedi S, Dhanotia J, Prakash S. Measurement of focal length using phase shifted
moiré deflectometry. Opt Lasers Eng 2013;51(6):776–82.
[10] Rasouli S, Rajabi Y, Sarabi H. Microlenses focal length measurement using z-scan
and parallel moiré deflectometry. Opt Lasers Eng 2013;51(12):1321–6.
[11] Lee S. Talbot interferometry for measuring the focal length of a lens without moire
fringes. J Opt Soc Korea 2015;19:165–8.
[12] Miks A, Pokorny P. Use of diffraction grating for measuring the focal length and
distortion of optical systems. Appl Opt 2015;54(34):10200–6.
[13] Wu J-j, Chen J-b, Xu A-c, Gao X-y, Zhuang S. Focal length measurement based on
Hartmann–Shack principle. Opt – Int J Light Electron Opt 2012;123(6):485–8.
[14] Tebaldi M, Forte G, Torroba R, Bolognini N, Tagliaferri A. Self-imaging pitch
variation applied to focal length digital measurements. Opt Commun 2005;250(1):
10–5.
[15] Mikš A, Pokorny` P. Edge spread function of Talbot phenomenon. Opt – Int J Light
Electron Opt 2016;127:8065–9. http://dx.doi.org/10.1016/j.ijleo.2016.06.003.
[16] Talbot HF. Lxxvi. Facts relating to optical science. No. iv. Lond Edinb Philos Mag J
Sci 1836;9(56):401–7.
[17] Patorski K. I. The self-imaging phenomenon and its applications. Prog Opt
1989;27:1–108.
[18] Torcal-Milla FJ, Sánchez-Brea LM, Salgado-Remacha FJ, Bernabeu E. Self-imaging
with curved gratings. Opt Commun 2010;283(20):3869–73.
[19] Torcal-Milla FJ, Sánchez-Brea LM, Bernabeu E. Near field diffraction of cylindrical
convex gratings. J Opt 2015;17(3):035601.
[20] Morrison FA. Obtaining uncertainty measures on slope and intercept of a least
squares fit with excel linest. Michigan, USA: Department of Chemical Engineering,
Michigan Technological University, Houghton; 25 September 2014.
[21] Sánchez-Brea LM, Torcal-Milla FJ, Herrera-Fernandez JM, Morlanes T, Bernabeu
E. Self-imaging technique for beam collimation. Opt Lett 2014;39(19):5764–7.
[22] Christensen R. Linear models for multivariate, time series, and spatial data. Berlin:
Springer-Verlag; 1985.
[23] Cressie N. Statistics for spatial data, revised ed., vol. 928. New York: Wiley; 1993.
[24] Sánchez-Brea LM, Torcal-Milla FJ, Bernabeu E. Variogram-based method for
contrast measurement. Appl Opt 2007;46(22):5027–33.
0143-8166
10.1016/j.optlaseng.2016.09.008
https://hdl.handle.net/20.500.14352/18972
http://dx.doi.org/10.1016/j.optlaseng.2016.09.008
http://www.sciencedirect.com/
An accurate and simple technique for determining the focal length of a lens is presented. It consists of measuring the period of the fringes produced by a diffraction grating at the near field when it is illuminated with a beam focused by the unknown lens. In paraxial approximation, the period of the fringes varies linearly with the distance. After some calculations, a simple extrapolation of data is performed to obtain the locations of the principal plane and the focal plane of the lens. Thus, the focal length is obtained as the distance between the two mentioned planes. The accuracy of the method is limited by the collimation degree of the incident beam and by the algorithm used to obtain the period of the fringes. We have checked the technique with two commercial lenses, one convergent and one divergent, with nominal focal lengths (+100±1) mm and (−100±1) mm respectively. We have experimentally obtained the focal lengths resulting into the interval given by the manufacturer but with an uncertainty of 0.1%, one order of magnitude lesser than the uncertainty given by the manufacturer.
eng
Near-field diffraction-based focal length determination technique
journal article
URL
https://docta.ucm.es/bitstreams/3219e45f-251b-49f5-9c5a-7660021282cd/download
File
MD5
3017a0c68a095a8f546eb8d89665097f
856638
application/pdf
SBrea 05 postp EMB 01_10_18.pdf
URL
https://docta.ucm.es/bitstreams/54e472ca-0c1b-4c6a-b9e1-2133157c7523/download
File
MD5
57a4d1986b77d1277923162a380e9218
23799
text/plain
SBrea 05 postp EMB 01_10_18.pdf.txt