2023-11-29T17:45:57Zhttps://docta.ucm.es/rest/oai/requestoai:docta.ucm.es:20.500.14352/241762023-08-04T04:15:49Zcom_20.500.14352_14col_20.500.14352_15
Rodrigo Martín-Romo, José Augusto
Alieva, Tatiana Krasheninnikova
2023-06-18T06:47:15Z
2023-06-18T06:47:15Z
2015-08-01
1. M. Soskin and M. Vasnetsov, “Singular optics,” Progress in Optics 42, 219–2 (2001).
2. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539–554 (1998).
3. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
4. G. V. Bogatyryova, C. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Letts. 28, 878–880 (2003).
5. D. M. Palacios, I. D. Maleev, A. S. Marathay, and J. G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
6. I. D. Maleev, D. M. Palacios, A. S. Marathay, and J. G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
7. Y. Yang, M. Chen, M. Mazilu, A. Mourka, Y.-D. Liu, and K. Dholakia, “Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity,” New J. Phys. 15, 113053 (2013).
8. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, UK, 2006).
9. A. C. Schell, “The multiple plate antenna,” Ph.D. thesis, Massachusetts Institute of Technology (1961).
10. M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Adv. Opt. Photon. 3, 272–365 (2011).
11. T. Alieva, J. A. Rodrigo, A. Cámara, and E. Abramochkin, “Partially coherent stable and spiral beams,” J. Opt. Soc. Am. A 30, 2237–2243 (2013).
12. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (John Wiley&Sons, NY, USA, 2001).
13. T. Alieva, Advances in Information Optics and Photonics ICO International Trends in Optics: Vol. VI (SPIE Press, USA , ISBN - 9780819472342, 2008), chap. First-Order Optical Systems for Information Processing, pp. 1–26.
14. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Programmable twodimensional optical fractional Fourier processor,” Opt. Express 17, 4976–4983 (2009).
15. R. Simon and G. S. Agarwal, “Wigner representation of laguerre–gaussian beams,” Optics Letters 25, 1313–1315 (2000).
0146-9592
10.1364/OL.40.003635
https://hdl.handle.net/20.500.14352/24176
http://dx.doi.org/10.1364/OL.40.003635
https://www.osapublishing.org
We show that the propagation of the widely used Schell-model partially coherent light can be easily understood using the ambiguity function. This approach is especially beneficial for the analysis of the mutual intensity of Schell-model beams (SMBs), which are associated with stable coherent beams such as Laguerre-, Hermite-, and Ince-Gaussian. We study the evolution of the coherence singularities during the SMB propagation. It is demonstrated that the distance of singularity formation depends on the coherence degree of the input beam. Moreover, it is proved that the shape, position, and number of singularity curves in far field are defined by the associated coherent beam.
eng
open access
Evolution of coherence singularities of Schell-model beams
journal article