2023-12-04T20:07:17Zhttps://docta.ucm.es/rest/oai/requestoai:docta.ucm.es:20.500.14352/595392023-08-27T00:51:01Zcom_20.500.14352_14col_20.500.14352_15
Circular strings, wormholes, and minimum size
Garay Elizondo, Luis Javier
González Díaz, Pedro F.
Mena Marugán, Guillermo A.
Raya, José M.
51-73
De Sitter spacetime
Anti
Quantization
Física-Modelos matemáticos
Física matemática
© 1997 The American Physical Society.
The authors want to thank C. Barceló for helpful discussions. L.J.G. was supported by funds provided by DGICYT and MEC (Spain) under Contract Adjunct to the Project No. PB94-0107. P.G.-D. acknowledges DGICYT for financial support under Research Projects Nos. PB94-0107 and PB93-0139, and MEC Spanish German Joint Action No. 161.B. G.A.M.M. has been partially supported by funds provided by MEC and DGICYT under Research Project No. PB93-0139.
The quantization of circular strings in an anti-de Sitter background spacetime is performed, obtaining a discrete spectrum for the string mass. A comparison with a four-dimensional homogeneous and isotropic spacetime coupled to a conformal scalar field shows that the string radius and the scale factor have the same classical solutions and that the quantum theories of these two models are formally equivalent. However, the physically relevant observables of these two systems have different spectra, although they are related to each other by a specific one-to-one transformation. We finally obtain a discrete spectrum for the spacetime size of both systems, which presents a nonvanishing lower bound.
DGICYT (Spain)
MEC (Spain)
MEC Spanish German Joint Action
Depto. de Física Teórica
Fac. de Ciencias Físicas
TRUE
pub
2023-06-20T19:20:13Z
2023-06-20T19:20:13Z
1997-06-15
journal article
https://hdl.handle.net/20.500.14352/59539
[1] A. L. Larsen and N. Sánchez, Phys. Rev. D 50, 7493 (1994); 51, 6929 (1995); Nucl. Phys. B427, 643 (1994); H. J. de Vega, A. V. Mikhailov, and N. Sánchez, Theor. Math. Phys. 94, 166 (1993).
[2] A. L. Larsen and N. Saánchez, Phys. Rev. D 52, 1051 (1995).
[3] H. J. de Vega, A. L. Larsen, and N. Sánchez, Phys. Rev. D 51, 6917 (1995).
[4] H. J. de Vega and I. L. Egusquiza, Phys. Rev. D 49, 763 (1994); A. L. Larsen and N. Sánchez, Int. J. Mod. Phys. A 11, 4005 (1996).
[5] C. Barceló, L. J. Garay, P. F. González-Díaz, and G. A. Mena Marugán, Phys. Rev. D 53, 3162 [1996].
[6] A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity, edited by L. Z. Fang and R. Ruffini (World Scientific, Singapore, 1991); A. Ashtekar and R. S. Tate, J. Math. Phys. (N.Y.) 35, 6434 (1994).
[7] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995).
[8] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, England, 1988).
[9] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972); I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. (Academic, London, 1994).
[10] C. J. Isham, Lectures on Quantum Theory: Mathematical and Structural Foundations (Imperial College Press, London, 1995); A. Galindo and P. Pascual, Mecánica Cuántica (Alhambra, Madrid, 1978).
[11] S. Coleman, Nucl. Phys. B310, 643 (1988).
0556-2821
10.1103/PhysRevD.55.7872
http://dx.doi.org/10.1103/PhysRevD.55.7872
http://journals.aps.org
http://arxiv.org/pdf/hep-th/9608004v2.pdf
eng
PB94-0107
PB94-0107
PB93-0139
161.B.
PB93-0139
open access
application/pdf
Amer Physical Soc