Díaz García, ElenaCabrera Granado, EduardoGómez Calderón, Óscar2023-06-182023-06-182016-05-251. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005). 2. K.-H. Kim, A. Husakou, and J. Herrmann, Opt. Express 20, 25790 (2012). 3. S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind, and J. Mork, Nat. Commun.5, 5039 (2014). 4. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, Sci. Technol. Adv. Mater.15, 024602 (2014). 5. E. Cabrera-Granado, E. Díaz, and O. G. Calderón, Phys. Rev. Lett. 107, 013901 (2011). 6. J. Knoester, Int. J. Photoenergy 2006, 61364 (2006). 7. S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, Nanophotonics 2, 21 (2013). 8. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 98, 6564 (1993). 9. H. Glaeske, V. A. Malyshev, and K.-H. Feller, Phys. Rev. A 65, 033821 (2002). 10. F. Herrera, B. Peropadre, L. A. Pachon, S. K. Saikin, and A. Aspuru-Guzik, J. Phys. Chem. Lett.5, 3708 (2014). 11. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015). 12. E. C. Jarque and V. A. Malyshev, J. Chem. Phys. 115, 4275 (2001). 13. H. Fidder, J. Knoester, and D. A. Wiersma, Chem. Phys. Lett. 171, 529 (1990). 14. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994). 15. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411 (1981). 16. H. Stiel, S. Daehne, and K. Teuchner, J. Lumin. 39, 351 (1988). 17. R. V. Markov, Z. M. Ivanova, A. I. Plekhanov, N. A. Orlova, and V. V. Shelkovnikov, Quantum Electron. 31, 1063 (2001)0146-959210.1364/OL.41.002569https://hdl.handle.net/20.500.14352/23081© 2016 Optical Society of America. Funding. MINECO (MAT2013-46308, FIS2013- 41709-P).We study the slow-light performance in the presence of exciton – exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics.engIncreasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamicsjournal articlehttp://dx.doi.org/10.1364/OL.41.002569https://www.osapublishing.org/open access538.9621.38537.8004.42Slow-lightMolecular aggregatesExciton dynamicsFísica (Física)ElectromagnetismoElectrónica (Física)Física de materialesFísica del estado sólidoÓptica (Física)Programación de ordenadores (Física)Química física (Física)22 Física2202 Electromagnetismo2211 Física del Estado Sólido2209.19 Óptica Física2210 Química Física