Pereira, L.Pereira, E.Gomes, H.Rodrigues, A.Rees, A.Cremades Rodríguez, Ana IsabelPiqueras de Noriega, Javier2023-06-202023-06-202000-04[1] A.T. Collins, Mater. Sci. Eng. B 11 (1992) 257. [2] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada, Diamond Relat. Mater. 8 (1999) 927. [3] H.J. Looi, L.Y.S. Pang,M.D.Whitfield, J.S. Ford, R.B. Jackman, Diamond Relat. Mater. 8 (1999) 966. [4] D.M. Malta, J.A. von Windheim, H.A. Wynands, B.A. Fox, J. Appl. Phys. 77 (1995) 1536. [5] P. Gonon, A. Deneuville, F. Fontaine, E. Gheeraert, J. Appl. Phys. 78 (1995) 6633. [6] R.B. Jackman, J. Beckman, J.S. Foord, Diamond Relat. Mater. 4 (1995) 735. [7] S.A. Stuart, S. Prawer, P.S. Weiser, Diamond Relat. Mater. 2 (1993) 735. [8] Y. Bounouh, M.L. The´ye, A. Dehbi-Alaoui, A. Mathewes, J.P. Stoquert, Phys. Rev. B 51 (1995) 9597. [9] R.E. Shroder, R.J. Nemanich, J.T. Glass, Phys. Rev. B 41 (1990) 3783. [10] J.J. Schermer, W.P.J. van Enckvort, L.J. Giling, Diamond Relat.Mater. 3 (1994) 408. [11] E. Pereira, L. Pereira, R. Raue, Diamond Relat. Mater. 1 (1992) 910. [12] L.H. Robins, L.P. Cook, E.N. Farabaugh, A. Feldman, Phys. B 39 (1989) 13 367. [13] A.T. Collins, M. Kamo, Y. Sato, J. Phys. D 22 (1989) 1402. [14] R.J. Graham, T.D. Moustakas, M.M. Disko, J. Appl. Phys. 69 (1991) 3212. [15] A. Cremades, F. Domínguez-Adame, J. Piqueras, J. Appl. Phys.74 (1993) 5726. [16 ] D.M. Malta, J.A. von Windhein, H.A. Wynands, B.A. Fox, J.. Appl. Phys. 77 (1994) 1536. [17] B. Fiegl, R. Kuhnert, M. Ben-Chorin, F. Koch, Appl. Phys. Lett.65 (1994) 317. [18] A.T. Collins, Diamond Relat. Mater. 1 (1992) 457. [19] L. Pereira, E. Pereira, A. Cremades, J. Piqueras, Diamond Relat. Mater. 5 (1996) 1189. [20] L. Pereira, E. Pereira, A. Cremades, J. Piqueras, J. Jiménez, J.M. Bielza, Diamond Relat. Mater. 8 (1999) 1333.0925-963510.1016/S0925-9635(99)00330-1https://hdl.handle.net/20.500.14352/58817© 2000 Elsevier Science S.A. All rights reserved. European Conference on Diamond, Diamond-Like Materials, Nitrides and Silicon Carbide (10. 199. Praga. Republica Checa). The authors wish to thank Dr. Qi Hua Fan and Mr. A.J. Fernandes for the growth facilities.The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process.engMicroelectrical characterisation of diamond films: an attempt to understand the structural influence on electrical transport phenomenajournal articlehttp://www.sciencedirect.com/science/article/pii/S0925963599003301http://www.sciencedirect.comrestricted access538.9Chemical-Vapor-DepositionFlame-Grown DiamondDefectsCathodoluminescenceLuminescenceTransistorsQualityPlasmaFísica de materiales