Bénilan, PhilippeCarrillo Menéndez, JoséWittbold, Petra2023-06-202023-06-2020020391-173Xhttps://hdl.handle.net/20.500.14352/57417A scalar conservation law ut +div (u) = f is considered with the initial datum u|t=0 = u0 2 L1 loc(RN) and f 2 L1 loc(RN ×(0, T)) only. In this case the classical Krushkov condition can make no sense because of unboundedness of u, if no growth condition on is assumed. This obstacle is overcome by introducing the so-called renormalized entropy solution generalizing the classical one. Existence and uniqueness of such a solution is established.engRenormalized entropy solutions of scalar conservation laws.journal articlehttp://www.numdam.org/numdam-bin/feuilleter?j=ASNSPhttp://www.numdam.orgrestricted access517.9Nonlinear semigroup theoryCauchy problemmild solutionsRenormalized ntropy sub- and super-solutionsEcuaciones diferenciales1202.07 Ecuaciones en Diferencias