Carreño Sánchez, FernandoAntón Revilla, Miguel Ángel2023-06-182023-06-182016-03-151. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 2. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Parker, and D. G. Steel, Science 282, 1473 (1998). 3. M. Atatüre J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, Science 312, 551 (2006). 4. X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, Phys. Rev. Lett. 99, 097401 (2007). 5. C. Emary, X. Xu, D. G. Steel, S. Saikin, and L. J. Sham, Phys. Rev. Lett. 98, 047401 (2007). 6. V. Loo, L. Lanco, O. Krebs, P. Senellart, and P. Voisin, Phys. Rev. B 83, 033301 (2011). 7. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Nature (London) 451, 441 (2008). 8. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009). 9. D. Brunner, Ph.D. thesis, Herior-Watt University, 2010, http://hdl.handle.net/10399/2350 10. Y. Wu, E. D. Kim, X. Xu, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, and L. J. Sham, Phys. Rev. Lett. 99, 097402 (2007). 11. A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, Phys. Rev. Lett. 100, 197401 (2008). 12. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London) 456, 218 (2008). 13. K. Greve, P. L. McMahon, D. Press, T. D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, and Y. Yamamoto, Nat. Phys. 7, 872 (2011). 14. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Phys. Rev. Lett. 99, 187402 (2007). 15. A. N. Vamivakas, Y. Zhao, C.-Y. Lu, and M. Atatüre, Nat. Phys. 5, 198 (2009). 16. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, Nat. Phys. 5, 203 (2009). 17. S. T. Yilmaz, P. Fallahi, and A. Imamoglu, Phys. Rev. Lett. 105, 033601 (2010). 18. P. Fallahi, S. T. Yilmaz, and A. Imamoglu, Phys. Rev. Lett. 105, 257402 (2010). 19. A. Ulhaq, S. Weiler, C. Roy, S. M. Ulrich, M. Jetter, S. Hugues, and P. Michler, Opt. Express 21, 4382 (2013). 20. R.-C. Ge, S. Weiler, A. Ulhaq, S. M. Ulrich, M. Jetter, P. Michler, and S. Hughes, Opt. Lett. 38, 1691 (2013). 21. C.-Y. Lu, Y. Zhao, A. N. Vamivakas, C. Matthiesen, S. Fält, A. Badolato, and M. Atatüre, Phys. Rev. B 81, 035332 (2010). 22. H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs, and G. Cassabois, Appl. Phys. Lett. 99, 261904 (2011). 23. C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Phys. Rev. Lett. 108, 093602 (2012). 24. K. Konthasinghe, M. Peiris, B. Petrak, Y. Yu, Z. C. Niu, and A. Muller, Opt. Lett. 40, 1846 (2015). 25. C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, Phys. Rev. A 59, 1025 (1999). 26. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, Nature (London) 449, 68 (2007). 27. J. Hofmann, M. Krug, N.t Ortegel, L. Gérard, M. Weber, W. Rosenfeld, and H. Weinfurter, Science 337, 72 (2012). 28. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Nature (London) 497, 86 (2013). 29. A. Delteil, Z. Sun, W-B. Gao, E. Togan, S. Faelt, and A. Imamoglu, Nat. Phys. 12, 218 (2015). 30. G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, and A. Imamoglu, Phys. Rev. Lett. 103, 087406 (2009). 31. I. A. Merkulov, Al. L. Efros, and M. Rosen, Phys. Rev. B 65, 205309 (2002). 32. J. Dreiser, M. Atatüre, C. Galland, T. Müller, A. Badolato, and A. Imamoglu, Phys. Rev. B 77, 075317 (2008). 33. P. Maletinsky, A. Badolato, and A. Imamoglu, Phys. Rev. Lett. 99, 056804 (2007). 34. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997). 35. M. Lax, Phys. Rev. 172, 350 (1968). 36. J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for Numerical Computations (2015), http://www.gnu.org/software/octave/doc/interpreter. 37. J. M. Smith, P. A. Dalgarno, R. J. Warburton, A. O. Govorov, K. Karrai, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett. 94, 197402 (2005). 38. S. A. Empedocles and M. G. Bawendi, Science 278, 2114 (1997). 39. C. Matthiesen, M. J. Stanley, M. Hugues, E. Clarke, and M. Atatüre, Sci. Rep. 4, 1991 (2014). 40. A. Majumdar, E. D. Kim, and J. Vučković, Phys. Rev. B 84, 195304 (2011). 41. K. Konthasinghe, J. Walker, M. Peiris, C. K. Shih, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni, Z. C. Niu, and A. Muller, Phys. Rev. B 85, 235315 (2012).1098-012110.1103/PhysRevB.93.125301https://hdl.handle.net/20.500.14352/24380The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum dots in the absence of an external magnetic field. The use of a far detuned single driving laser allows to obtain a Raman photon line which exhibits subnatural linewidth, and whose center can be tuned by changing the detuning and/or the Rabi frequency of the driving field. The Raman photons are produced along the undriven transition and they arise from the weak interaction of the trion states with the nuclear spins. The operating point for the gate voltage of the heterostructure can also be used to modify the linewidth and the peak value of the fluorescent signal.engTunable Raman photons in singly charged p-doped quantum dotsjournal articlehttp://dx.doi.org/10.1103/PhysRevB.93.125301http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.125301open access535.374530.145Quantum dotsRaman photonsLasersFísica nuclearTeoría de los quantaÓptica física, óptica cuántica2207 Física Atómica y Nuclear2210.23 Teoría Cuántica2209.19 Óptica física