Varela del Arco, MaríaArias Serna, DiegoSefrioui, ZouhairLeón Yebra, CarlosBallesteros, C.Pennycook, S. J.Santamaría Sánchez-Barriga, Jacobo2023-06-202023-06-202002-10-011) A.A.R. Fernandes, J. Santamaría, S.L. Bud’ko, O. Nakamura, J. Guimpel, I. K. Schuller, Phys. Rev. B, 44, 7601 (1991). 2) J.P. Attfield, A.L. Kharlanov, J.A. McAllister, Nature (London), 394, 157 (1998). 3) W.E. Pickett, Phys. Rev. Lett., 78, 1960 (1997). 4) S. Chakravarty, A. Sudbø, P.W. Anderson, S. Strong, Science, 261, 337 (1993). 5) S. Chakravarty, A. Sudbø, P.W. Anderson, S. Strong, Phys. Rev. B, 49, 12, 245 (1994). 6) S. Chakravarty, P.W. Anderson, Phys. Rev. Lett., 72, 3859 (1994). 7) P.W. Anderson, Science, 279, 1196 (1998). 8) A.J. Legget, Science, 274, 587 (1996). 9) J.L. Tallon, G.V.M. Williams, C. Bernhard, D.M. Pooke, M.P. Staines, J.D. Johnson, R.H. Meinhold, Phys. Rev. B, 53, R11, 972 (1996). 10) Xiaojia Chen, Chande Gong, Phys. Rev. B, 59, 4513 (1999). 11) O. Chmaissem, J.D. Jorgensen, S. Short, A. Knizhnik, Y. Eckstein, H. Shaked, Nature (London), 397, 45 (1999). 12) K.A. Lokshin, D.A. Pavlov, S.N. Putilin, E.V. Antipov, D.V. Sheptyakov, A.M. Balagurov, Phys. Rev. B, 63, 064511 (2001). 13) X.D. Xiang, W.A. Vareka, A. Zettl, J.L. Corkill, M.L. Cohen, N. Kijima, R. Gronsky, Phys. Rev. Lett., 68, 530 (1992). 14) J.-H. Choy, S.-J. Kwon, G.-S. Park, Science, 280, 1589 (1998). 15) X.J. Chen, C.D. Gong, Y.B. Yu, Phys. Rev. B, 61, 3691 (2000). 16) J.G. Lin, C.Y. Huang, Y.Y. Xue, C.W. Chu, X.W. Cao, J.C. Ho, Phys. Rev. B, 51, R12, 900 (1995). 17) J.D. Jorgensen, S. Pei, P. Lightfoot, D.G. Hinks, B.W. Hinks, B.W. Veal, B. Dabrowski, A.P. Paulikas, R. Kleb, Physica C, 171, 93 (1990). 18) C.C. Almasan, S.H. Han, B.W. Lee, L.M. Paulius, M.B. Maple, B.W. Veal, J.W. Donwey, A.P. Paulikas, Z. Fisk, J.E. Schirber, Phys. Rev. Lett., 69, 680 (1992). 19) M. Varela, Z. Sefrioui, D. Arias, M.A. Navacerrada, M.A. López de la Torre, M. Lucía, C. León, G.D. Loos, F. Sánchez-Quesada, J. Santamaría, Phys. Rev. Lett., 83, 3936 (1999). 20) M. Varela, D. Arias, Z. Sefrioui, C. León, C. Ballesteros, J. Santamaría, Phys. Rev. B, 62, 12, 509 (2000). 21) E.E. Fullerton, I.K. Schuller, H. Vanderstraeten, Y. Bruynseraede, Phys. Rev. B, 45, 9292 (1992). 22) E.E. Fullerton, J. Guimpel, O. Nakamura, I.K. Schuller, Phys. Rev. Lett., 69, 2589 (1992). 23) M. Varela, W. Grogger, D. Arias, Z. Sefrioui, C. León, C. Ballesteros, K.M. Krishnan, J. Santamaría, Phys. Rev. Lett., 86, 5156 (2001). 24) Z. Sefrioui, D. Arias, M. Varela, J.E. Villegas, M.A. López de la Torre, C. León, G.D. Loos, J. Santamaría, Phys. Rev. B, 60, 15, 423 (1999). 25) It is important to note that while these soft anneals do not cause deoxygenation in single YBCO films, slight deoxygenation is favored in superlattices by the strained structure of the ab plane. 26) N. Nücker, J. Fink, J.C. Fuggle, P.J. Durha, W.M. Temmerman, Phys. Rev. B, 37, 5158 (1988). 27) N.D. Browning, J. Yuan, L.M. Brown, Physica C, 202, 12 (1992). 28) N.D. Browning, M.F. Chisholm, D.P. Norton, D.H. Downdes, S.J. Pennycook, Physica C, 212, 185 (1993). 29) N.D. Browning, J.P. Buban, P.D. Nellist, D.P. Norton, S.J. Pennycook, Physica C, 294, 183 (1998). 30) G. Nieva, E. Osquiguil, J. Guimpel, M. Maenhoudt, B. Wuyts, Y. Bruynseraede, M.B. Maple, I.K. Schuller, Appl. Phys. Lett., 60, 2159 (1992). 31) C. Bandte, Phys. Rev. B, 49, 9064 (1994). 32) M. Rasolt, T. Edis, Z. Tesanovic, Phys. Rev. Lett., 66, 2927 (1991). 33) Y. Matsuda, S. Komiyama, T. Terashima, K. Shimura, Y. Bando, Phys. Rev. Lett., 69, 3228 (1992). 34) T. Terashima, K. Shimura, Y. Bando, Y. Matsuda, A. Fujiyama, S. Komiyama, Phys. Rev. Lett., 67, 1362 (1991). 35) M.Z. Cieplak, S. Guha, S. Vadlamannati, T. Giebultowicz, P. Lindenfeld, Phys. Rev. B, 50, 12, 876 (1994).1098-012110.1103/PhysRevB.66.134517https://hdl.handle.net/20.500.14352/59617© 2002 The American Physical Society. This work was supported by CICYT MAT2000-1468, Fundación Ramón Areces and CAM07N/0008/2001.We report the effects of epitaxial strain and deoxygenation on high quality [YBa_(2)Cu_(3)O_(7-x)(YBCO)_(N) /PrBa_(2)Cu_(3)O_(7)(PBCO)_(5)]_(1000 Å) superlattices, with 1 < N < 12 unit cells. High-spatialresolution electron energy loss spectroscopy shows that strained, fully oxygenated YBCO layers are underdoped. Irrespective of whether underdoping is induced by strain or deoxygenation, x-ray diffraction analysis shows that T_(c) correlates directly with separation of the CuO_(2) bilayers.engDirect correlation between T_(c) and CuO_(2) bilayer spacing in YBa_(2)Cu_(3)O_(7-x)journal articlehttp://dx.doi.org/10.1103/PhysRevB.66.134517http://journals.aps.org/open access537High-temperature superconductorCharge-transferTransition-temperatureGrain-boundariesThin-filmsSuperlatticesPressureDependenceLayersOrigin.ElectricidadElectrónica (Física)2202.03 Electricidad