Henry, JacquesRamos Del Olmo, Ángel Manuel2023-06-202023-06-2020040362-546X10.1016/j.na.2004.05.022https://hdl.handle.net/20.500.14352/50289We present a method to factorize a second-order boundary value problem in a cylindrical domain in a system of uncoupled first-order initial value problems, together with a nonlinear Riccati-type equation for functional operators. This uncoupling is obtained by a space invariant embedding technique along the axis of the cylinder. This method can be viewed as an infinite-dimensional generalization of the block Gauss LU factorization.engFactorization of second-order elliptic boundary value problems by dynamic programming.journal articlehttp://www.sciencedirect.com/science/article/pii/S0362546X04002469http://www.sciencedirect.comrestricted access517.95FactorizationBoundary value problemRiccati equationInvariant embeddingNeumann-to-Dirichlet (NtD) operatorDirichlet-to-Neumann (DtN) operatorAnálisis matemático1202 Análisis y Análisis Funcional