Magdas, D.A.Cremades Rodríguez, Ana IsabelPiqueras de Noriega, Javier2023-06-202023-06-202006-03-131.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 2.X. Y. Kong and Z. L. Wang, Solid State Commun. 128, 1 (2003). 3.C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. (Weinheim, Ger.) 13, 1330 (2001). 4.C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 143 (2003). 5.L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, and B. Q. Hu, Appl. Phys. A 75, 687 (2002). 6.X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, Appl. Phys. A 74, 437 (2002). 7.F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004). 8.D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 044316 (2005). 9.E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 10.J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 11.P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 12.A. Urbieta, P. Fernández, and J. Piqueras, Appl. Phys. Lett. 85, 5968 (2004). 13.S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992). 14.Q. Guo, O. Kato, and A. Yoshida, J. Appl. Phys. 73, 7969 (1993). 15.S. Oh and T. Ishigaki, Thin Solid Films 457, 186 (2004). 16.H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu,Appl. Phys. Lett. 82, 4146 (2003). 17.P. Guha, S. Kar, and S. Chaudhuri, Appl. Phys. Lett. 85, 3851 (2004). 18.Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, and Y. Qian, Cryst. Growth Des. 5, 147 (2005). 19.M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, Thin Solid Films 279, 1 (1996). 20.H. Zhou, W. Cai, and L. Zhang, Appl. Phys. Lett. 75, 495 (1999). 21.M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett. 79, 839 (2001). 22.H. Cao, X. Qiu, Y. Liang, and Q. Zhu, Appl. Phys. Lett. 83, 761 (2003).0003-695110.1063/1.2185833https://hdl.handle.net/20.500.14352/50841(c) 2006 American Institute of Physics. This work has been supported by EU Marie Curie program (HPMT-CT-2001-00215) by MEC (Project No. MAT-2003-00455)and by CAM (Project No. GR/MAT 630-04). D.A.M acknowledges the Marie Curie fellowship in the frame of the HPMT-CT-2001-00215 projectIndium oxide elongated micro- and nanostructures have been grown by thermal treatment of InN powder. Chains of nanopyramids connected by nanowires, forming a necklace-like structure, as well as cubes and arrow-like structures consisting of a long rod with a micron size pyramid on the top, grow at temperatures in the range 600-700 degrees C in a catalyst free process. The structures have been characterized by scanning electron microscopy and cathodoluminescence.engGrowth and luminescence of elongated In2O3 micro- and nanostructures in thermally treated InNjournal articlehttp://apl.aip.org/resource/1/applab/v88/i11/p113107_s1http://apl.aip.orgopen access538.9Photoluminescence PropertiesNanowiresNanobeltsFilmsFísica de materiales