López Gómez, JuliánSampedro Pascual, Juan Carlos2023-06-172023-06-1720200362-546X10.1016/j.na.2020.112019https://hdl.handle.net/20.500.14352/7596Artículo dedicado a Shair Ahmad para conmemorar su 85 aniversario.This paper tries to establish a link between topological and algebraic methods in nonlinear analysis showing how the topological degree for Fredholm operators of index zero of Fitzpatrick, Pejsachowicz and Rabier [11] can be determined from the generalized algebraic multiplicity of Esquinas and López-Gómez [8], [7], [22], in the same vein as the Leray–Schauder degree can be calculated from the Schauder formula through the classical algebraic multiplicity.engAlgebraic multiplicity and topological degree for Fredholm operatorsjournal articlehttps://doi.org/10.1016/j.na.2020.112019https://www.sciencedirect.com/science/article/abs/pii/S0362546X20302315#!open access51Schauder formulaFredholm pathsLeray–Schauder degreeDegree of Fitzpatrick Pejsachowicz and RabierGeneralized algebraic multiplicityFórmula de ShauderGrado de Leray-SchauderMatemáticas (Matemáticas)Álgebra12 Matemáticas1201 Álgebra