Hernández, Francisco L.Ruiz Bermejo, César2023-06-202023-06-202012-05-150022-247X10.1016/j.jmaa.2011.12.033https://hdl.handle.net/20.500.14352/42249It is shown that a separable variable exponent (or Nakano) function space L-p(.)(Ω) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(Ω) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(Ω), for every q is an element of Rp(.)engl(q)-structure of variable exponent spacesjournal articlehttp://www.sciencedirect.com/science/article/pii/S0022247X11011504http://www.sciencedirect.comrestricted access517.982.27517.982.2Orlicz sequence-spacescopiesvariable exponent spacesisomorphic l(p)-copiesbounded projectionsAnálisis matemático1202 Análisis y Análisis Funcional