Hempel, NadjaPalacín Cruz, Daniel2024-02-032024-02-032021-03Hempel, N.; Palacín, D. Centralizers in pseudo-finite groups. Journal of Algebra 2021, 569, 258–275. doi:10.1016/j.jalgebra.2020.11.004.0021-869310.1016/j.jalgebra.2020.11.004https://hdl.handle.net/20.500.14352/98546The role of finite centralizers of involutions in pseudo-finite groups is analyzed. It is shown that a pseudo-finite group admitting a definable involutory automorphism fixing only finitely many elements is finite-by-abelian-by-finite. As a consequence, we give a model-theoretic proof of a result for periodic groups due to Hartley and Meixner. Furthermore, it is shown that any pseudo-finite group has an infinite abelian subgroup.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Centralizers in pseudo-finite groupsjournal articlehttps//doi.org/10.1016/j.jalgebra.2020.11.004open accessLógica simbólica y matemática (Matemáticas)Grupos (Matemáticas)1102.10 Teoría de Modelos1201.06 Grupos, Generalidades