Capel, AngelaLucia, AngeloPérez García, David2024-01-162024-01-162017A. Capel, A. Lucia, y D. Perez-Garcia, «Superadditivity of Quantum Relative Entropy for General States», IEEE Trans. Inform. Theory, vol. 64, n.o 7, pp. 4758-4765, jul. 2018, doi: 10.1109/TIT.2017.2772800.4758-476510.1109/TIT.2017.2772800https://hdl.handle.net/20.500.14352/93365The property of superadditivity of the quantum relative entropy states that, in a bipartite system H AB = H A ⊗ H B , for every density operator ρ AB , one has D(ρ AB ||σ A ⊗ σ B )≥ D(ρ A ||σ A ) + D(ρB||σB). In this paper, we provide an extension of this inequality for arbitrary density operators σ AB . More specifically, we prove that α(σ AB )· D(ρ AB ||σ AB )≥D(ρ A ||σ A )+ D(ρ B ||σ B ) holds for all bipartite states ρ AB and σ AB , where α(σ AB ) = 1 + 2||σ A -1/2 ⊗ σ AB σ A -1/2 ⊗ σ B -1/2 - || AB || ∞ .engSuperadditivity of Quantum Relative Entropy for General Statesjournal articlehttps://doi.org/10.1109/TIT.2017.2772800restricted accessHilbert spaceQuantum relative entropySuperadditivityQuantum mechanicsFísica (Física)22 Física