Soria de Diego, Francisco JavierCarro Rossell, María JesúsLi, HongliangSun, Qinxiu2023-06-172023-06-1720201050-692610.1007/s12220-020-00560-6https://hdl.handle.net/20.500.14352/7564We find necessary conditions (which are also sufficient, for some particular cases) for a pair of weights u and w such that a Calder_on-Zygmund operator T, or its commutator [b; T], with b 2 BMO, is bounded on the weighted Lorentz spaces _p u(w), for 1 < p < 1. This result completes the study already known for the Hardy-Littlewood maximal operator and the Hilbert transform, and hence unifies the weighted theories for the Ap and Bp classes.engCalderón-Zygmund operators and commutators on weighted Lorentz spacesjournal articlehttps://www.springer.com/gphttps://link.springer.com/article/10.1007/s12220-020-00560-6open access512.815Calderón-Zygmund operatorsCommutatorsWeighted Lorentz spacesOperadores Calderón-ZygmundEspacios de LorentzMatemáticas (Matemáticas)12 Matemáticas