Barragán García, Vicenta MaríaGarcía Villaluenga, Juan PedroGodino Gómez, María PazIzquierdo Gil, María AmparoRuiz Bauzá, CarlosSeoane Rodríguez, Benjamín2023-06-202023-06-202009-05-15[1] X.T. Le, J. Colloid Interface Sci. 325 (2008) 215-222. [2] L. Jones, P.N. Pintauro, H. Tang, J. Membr. Sci. 162 (1999) 135–143. [3] C. Larchet, B. Auclair, V. Nikonenko, Electrochim. Acta (2004) 1711–1717. [4] E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, J. Colloid Interface Sci. 285 (2005) 247–258. [5] M. Sidorova, L. Ekmakova, A. Kiprianova, D. Aleksandrov, S. Timofeev, Adv. Colloid Interface Sci. 134–135 (2007) 224–235. [6] N.P. Gnusin, N.P. Berezina, N.A. Kononenko, O.A. Dyomina, J. Membr. Sci. 243 (2004) 301–310. [7] N.P. Berezina, N.A. Kononenko, O.A. Dyonina, N.P. Gnusin, Adv. Colloid Interface Sci. 139 (2008) 3–28. [8] X.Y. Le, J. Colloid Interface Sci. 325 (2008) 215–222. [9] J.H. Choi, S.H. Kim, S.H. Moom, J. Colloid Interface Sci. 241 (2001) 120–126. [10] T.W. Xu, Y.L.L. Wu, W.H. Yang, Sep. Purif. Technol. 60 (2008) 73–80. [11] L. Chaabane, G. Bulvestre, C. Larchet, V. Nikonenko, C. Deslouis, H. Takenouti, J. Membr. Sci. 323 (2008) 167–175. [12] J.P.G. Villaluenga, V.M. Barragán, M.A. Izquierdo Gil, M.P. Godino, B. Seoane, C. Ruiz-Bauzá, J. Membr. Sci. 323 (2008) 421–427. [13] V.M. Barragán, J.P.G. Villaluenga, M.P. Godino, M.A. Izquierdo Gil, C. Ruiz-Bauzá, B. Seoane, J. Power Sour. 185 (2008) 822–827. [14] L. Chaabane, G. Bulvestre, C. Innocent, G. Pourcelly, B. Aucler, Eur. Polym. J. 42 (2006) 1403–1416. [15] J.P.G. Villaluenga, V.M. Barragán, B. Seoane, C. Ruiz-Bauzá, Electrochim. Acta 51 (2006) 6297–6303. [16] S. Koter, J. Membr. Sci. 206 (2002) 201–215. [17] V.M. Barragán, C. Ruiz-Bauzá, J. Membr. Sci. 154 (1999) 261–272. [18] C. Ruiz-Bauzá, C. Rueda Sánchez, V.M. Barragán García, J. Non-Equilib. Thermodyn. 15 (1990) 383–396. [19] G.J. Janz, in: D.J.G. Ives, G.J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961, pp. 179–230. [20] N. Laksminarayanaiah, Transport Phenomena in Membranes, Academic Press, New York, 1969. [21] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Membr. Sci. 236 (2004) 109–120. [22] S.R. De Groot, Thermodynamics of Irreversible Processes, fourth ed., North- Holland, Amsterdam, 1966. [23] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 205 (1998) 365–373. [24] T. Xue, R.B. Longwell, K. Osseo-Asare, J. Membr. Sci. 58 (1991) 175–189. [25] S. Koter, P. Piotrowski, J. Kerres, J. Membr. Sci. 153 (1999) 83–90. [26] R.F.D. Costa, J.Z. Ferreira, C. Deslouis, J. Membr. Sci. 215 (2003) 115–128. [27] A. Lehmani, P. Turq, M. Perie, J.P. Simonin, J. Electroanal. Chem. 428 (1997) 81– 89. [28] F. Helfferich, Ion Exchange, Dover, London, 1995.0021-979710.1016/j.jcis.2009.02.015https://hdl.handle.net/20.500.14352/43719© 2009 Elsevier Inc. The authors of this study gratefully acknowledge Prof. C. Larchet and Prof. V. Nikonenko for donating MK40 membrane samples. Financial support from Universidad Complutense de Madrid under Project PR1/08-15918-A is also gratefully acknowledged.Solvent uptake, hydraulic and electroosmotic permeabilities, true cation transport number, effective fixed charge concentration, and limiting current values have been determined in aqueous LiCl solutions for three commercial cation-exchange membranes with different morphologies and similar electric properties. The differences found in the equilibrium and transport properties of the membranes have been analyzed on the basis of their different structures. The experimental results show that the membrane morphology has an influence on the effect that the presence of an electrolyte has in the solvent uptake and in the liquid permeation. Differences have also been found in the polarization concentration effects, and on the loss of the membrane selectivity with the increase of the electrolyte concentration.engExperimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologiesjournal articlehttp://dx.doi.org/10.1016/j.jcis.2009.02.015http://pdn.sciencedirect.com/restricted access536Nafion MembraneMethanolWaterPermeationParametersMicrostructure.Termodinámica2213 Termodinámica