Zaldivar, M.H.Fernández Sánchez, PalomaPiqueras de Noriega, JavierSolís, J.2023-06-202023-06-201999-01-151. F. Ponce and D. B. Bour, Nature (London) 386,351 (1997). 2. A. v: Nurmikko and R.L. gunshor, Solid State Commun. 92, 113 (194). 3. H. Morkoç, S. Strite, B. Gao, M. E. Li, B. Sverdlov, and M. Burns, J. Appl. Phys. 76. 1363 (1994). 4. S. Nakamura, Mater. Res. Bull. 22, 29 (1997). 5. Y. Marfaing, J. Cryst. Growth 161, 205 (1996). 6. S. Nakamura, Diamond Relat. Mater. 5, 496 (1996). 7. H. Amano, M. Kito, K. Hiramatsu, and Akasaki, Jpn. J. Appl. Phys., Part2 28, L2112 (1989). 8. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai Jpn. J. Appl. Phys., Part 1 31, 1259 (1992). 9. W. S. Wong, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T. Sands, and N. W. Cheung, Mater. Res. Soc. Symp. Proc. 449, 1011 (1997). 10. A Cremades, J. Piqueras, C. Xavier, T. Monteiro, E. Pereira, B. K. Meyer, D. M. Hofmann, and S. Ficher, Mater. Res Bull. 42, 230 (1996). 11. M. Herrera Zaldívar , P. Fernández, and J. Piqueras, J: Appl. Phys. 83. 462 (1998). 12. E. Ponce, D. P. Bour, W. Götz, and P. J. Wright, App. Phys. Lett. 68, 57 (1996). 13. S. Christiasen, m. Albrecth, W. Dorsch, H. P. Strunk, A. Pelzmann, M. Mayer, M. Kamp, K. J. Ebelingg, C. Zanotti-Fragonara, and G. Salviatti, Mater. Sci. Eng., B 43, 296 (1997). 14. M: Herrera Zaldívar, P. Fernández, and J. Piqueras, Semicond. Sci. Technol. (in Press). 15. J. I. Pankove and J. A. Hutchby, J. Appl. Phys 47,5387 (1976). 16. M. Ilegems and R. Dingle, J. Appl. Phys. 44, 4234 (1973). 17. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernández, and J. Piqueras, Phys. Rev. B. 54 7622 (1996). 18. P. Fernández, J. Piqueras, J. A. García, A. Remón, and Muñoz, Semicond. Sci Technol. 13, 410 (1998). 19. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and C. J. Sun, Appl. Phys. Lett. 67, 3295 (1995). 20. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, Appl. Phys Lett. 72, 1326 (1998). 21. T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980). 22. J. Neugebauer and C. G. van de Valle, Appl. Phys. Lett. 69, 503 (1996).0021-897910.1063/1.369254https://hdl.handle.net/20.500.14352/59139© 1999 American Institute of Physics. This work was supported by DGES (Project PB96-0639). M. H. Z. thanks AECI and CoNaCyT for a research grant.Pulsed laser treatments have been performed in GaN samples of both n- and p-type conductivity. The laser induced changes have been monitored by emissive mode and cathodoluminescence (CL) in a scanning electron microscope. Emissive mode observations indicate a moderate laser induced recrystallization. The luminescent emission has been characterized in both types of samples, GaN:Si and GaN:Mg. Whereas the evolution of CL in the Si doped samples could be explained by the occurrence of laser induced annealing, the luminescent behavior of the Mg doped samples upon irradiation seems to be more complex and a strong relation with the compensation or Mg activation is suggested. Several luminescence bands with maxima ranging from 3.3 to 2.7 eV and their dependence on irradiation conditions have been studied.engEffect of laser irradiation on the luminescence of Mg and Si-doped GaN filmsjournal articlehttp://dx.doi.org/10.1063/1.369254http://scitation.aip.org/open access538.9Light-Emitting-DiodesIii-V NitrideThin-FilmsBlueCathodoluminescenceFísica de materiales