Montesinos Amilibia, José MaríaLafuente López, JavierPozo Coronado, Luis Miguel2023-06-202023-06-20200084-7491-581-3https://hdl.handle.net/20.500.14352/60752Let M be a closed orientable 3-manifold. A Dehn sphere S is a 2-sphere immersed in M with only double curve and triple point singularities. S fills M if S defines a cell decomposition of M. It is proven that every closed orientable 3-manifold has a filling Dehn sphere. Examples are given, and Johansson diagrams are proposed as a method for representing all closed orientable 3-manifolds.engRepresenting 3-manifolds by Dehn spheresbook partopen access515.1643-manifoldDehn sphereJohansson diagramHeegaard diagramGeometría diferencialTopología1204.04 Geometría Diferencial1210 Topología