Tello, J. IgnacioDíaz Díaz, Jesús Ildefonso2023-06-202023-06-2020021468-121810.1016/S1468-1218(01)00033-5https://hdl.handle.net/20.500.14352/57039We study the limit case corresponding to a model introduced by G.L. Stenchikov and A. Robock for the evolution of the temperature of an atmospheric column in absence of humidity. The model envolves a degenerate noncoercive quasilinear equation. The diffusion coefficient depends of the atmospheric stability and vanishes on the stable regions. We show the existence and uniqueness of a suitable class of weak solutions and prove that the number of stable and unstable regions are nonincreasing in time.engOn the mathematical analysis of the limit case of a radiative—convective climate modeljournal articlehttp://www.sciencedirect.com/science/journal/14681218open access517.9Degenerate quasilinear equationRadiative meteorological modelNumber of stable regionsNonlinear di4usionEcuaciones diferenciales1202.07 Ecuaciones en Diferencias