Carreño Sánchez, FernandoAntón Revilla, Miguel ÁngelYannopapas, V.Paspalakis, E.2023-06-182023-06-182016-07-19[1] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002). [2] W. Zhang, A. O. Govorov, G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006). [3] R. D. Artuso, G. W. Bryant, Nano Lett. 8, 2106 (2008). [4] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, R. R. Naik, Nano Lett. 6, 984 (2006). [5] V. V. Klimov, M. Ducloy, V. S. Letokhov, Eur. Phys. J. D 20, 133 (2002). [6] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, R. R. Naik, Nano Lett. 6, 984 (2006). [7] A. Manjavacas, F. J. Garc ́ıa de Abajo, P. Nordlander, Nano Lett. 11, 2318 (2011). [8] A. Manjavacas, P. Nordlander, F. J. Garc ́ıa de Abajo, ACS Nano 2, 1724 (2012). [9] F. H. L. Koppens, D. E. Chang, F. J. Garc ́ıa de Abajo, Nano Lett. 11, 3370 (2011). [10] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen, Nature Commun. 6, 7788 (2015). [11] T. B. Hoang, G. M. Akselrod, M. H. Mikkelsen, Nano Lett. 16, 270 (2016). [12] D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, X. Li, Nano Lett. 11, 1049 (2011). [13] A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta, Phys. Rev. Lett. 105, 263601 (2010). [14] Y. Gu, L. Huang, O. J. F. Martin, Q. Gong, Phys. Rev. B 81, 193103 (2010). [15] Y. V. Vladimirova, V. V. Klimov, V. M. Pastukhov, V. N. Zadkov, Phys. Rev. A 85, 053408 (2012). [16] E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Lisyansky, Jetp Lett. 97 452 (2013). [17] F. Carre ̃no, M. A. Ant ́on, F. Arrieta-Y ́a ̃nez, Phys Rev. B 88, 195303 (2013). [18] R.C. Ge, C. Van Vlack, P. Yao, J. F. Young, S. Hughes Phys. Rev. B 87, 205425 (2013). [19] J. Hakami, L. Wang, M. S. Zubairy, Phys. Rev. A 89, 053835 (2014). [20] V. Yannopapas, E. Paspalakis, N. V. Vitanov, Phys. Rev. Lett. 103, 063602 (2009). [21] S. Evangelou, V. Yannopapas, E. Paspalakis, Phys. Rev. A 83, 023819 (2011). [22] Y. Gu, L. Wang, P. Ren, J.-X. Zhang, T.-C. Zhang, O. J. F. Martin, Q.-H. Gong, Nano Lett. 12, 2488 (2012). [23] M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, Q.-Q. Wang, Opt. Lett. 32, 2125 (2007). [24] S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009). [25] M. A. Ant ́on, F. Carre ̃no, S. Melle, O. G. Calder ́on, E. Cabrera- Granado, J. Cox, M. R. Singh, Phys. Rev. B 86, 155305 (2012). [26] E. Paspalakis, S. Evangelou, A. F. Terzis, Phys. Rev. B 87, 235302 (2013). [27] A. V. Malyshev, V. A. Malyshev, Phys. Rev. B 84, 035314 (2011). [28] I. Thanopulos, E. Paspalakis, V. Yannopapas, Phys. Rev. B 85, 035111 (2012). [29] M. R. Singh, Nanotechnology 24, 125701 (2013). [30] J. D. Cox, M. R. Singh, M. A. Ant ́on, F. Carre ̃no, J. Phys. Condens. Matter. 25, 385302 (2013). [31] J. D. Cox, M. R. Singh, C. von Bilderling, A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013). [32] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, J. Knoester, J. Chem. Phys. 139, 014303 (2013). [33] E. Paspalakis, S. Evangelou, S. G. Kosionis, A. F. Terzis, J. Appl. Phys. 115 083106 (2014). [34] S. Evangelou, V. Yannopapas, E. Paspalakis, J. Mod. Opt. 61, 1458 (2014). [35] H. T. Dung, L. Knoll, D. G. Welsch, Phys Rev. A 66, 063810 (2002). [36] M. O. Scully, M. S. Zubairy, Quantum Optics, 1997 Cambridge University Press. [37] M. Lax, Phys. Rev. 172, 350 (1968). [38] P.B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972). [39] J. D. Jackson, Classical Electrodynamics, 1999 Wiley, New York. [40] V. Yannopapas, N. V. Vitanov, Phys. Rev. B 75, 115124 (2007). [41] H. J. Kimble, L. Mandel, Phys. Rev. A 13, 2123 (1976). [42] H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977). [43] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. W ̈ust, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, Science 325, 70 (2009). [44] A. N. Vamivakas, Y. Zhao, Chao-Yang Lu, M. Atat ̈ure, Nat. Phys. 5, 198 (2009). [45] H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs, G. Cassabois, Appl. Phys. Lett. 99, 261904 (2011). [46] C. Matthiesen, A. N. Vamivakas, M. Atat ̈ure, Phys. Rev. Lett. 108, 093602 (2012). [47] K. Konthasinghe, M. Peiris, B. Petrak, Y. Yu, Z. C. Niu, A. Muller, Opt. Lett. 40, 1846 (2015). [48] G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, A. Imamoglu, Phys. Rev. Lett. 103, 087406 (2009). [49] Y. He, Y. -M. He, Y. -J. Wei, X. Jiang, M. -C. Chen, F. -L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. H ̈ofling, C. -Y. Lu, J. -W. Pan, Phys. Rev. Lett. 111, 237403 (2013). [50] C. Santori, D. Fattal, K-M. C. Fu, P. E. Barclay, R. G. Beausoleil, New J. Phys. 11, 123009 (2009). [51] T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, D. Gammon, Nat. Phot. 8, 442 (2014). [52] A. Urba ́nczyk, G. J. Hamhuis, R. N ̈otzel, Appl. Phys. Lett. 96, 113101 (2010). [53] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Science 329, 930 (2010). [54] M. Pfeiffer, K. Lindfors , H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastell, O. G. Schmidt, H. Giessen, M. Lippitz, Nano Lett. 14,197 (2014). [55] S-H. Gong, J-H. Kim, Y-H. Ko, C. Rodriguez, J. Shin, Y-H. Lee, L. S. Dang, X. Zhang, Y-H. Cho, Proc. Nat. Acad. Sci. 112, 5280 (2015). [56] A. A. Lyamkina, K. Schraml, A. Regler, M. Schalk, A. K. Bakarov, A. I. Toropov, S. P. Moshchenko, M. Kaniber, Monolithically integrated single quantum dots coupled to bowtie nanoantennas, arXiv:1603.07093v1.2469-992610.1103/PhysRevA.94.013834https://hdl.handle.net/20.500.14352/24564Aceptado el 5 de julio de 2016. Publicado el 19 July 2016We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.engResonance fluorescence spectrum of a \Lambda-type quantum emitter close to a metallic nanoparticlejournal articlehttp://dx.doi.org/10.1103/PhysRevA.94.013834https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.013834open access539.2:620.1535.33535.14ResonanceFluorescence spectrumQuatum emitterQuantum information processingMetal nanoparticleÓptica (Física)PartículasTeoría de los quanta2209.19 Óptica Física2208 Nucleónica2210.23 Teoría Cuántica