Franqueira, M.Tagger, M.Gómez de Castro, Ana Inés2023-06-202023-06-202004Franqueira, M., Tagger, M. and G´omez de Castro, A. I.: 2000, A&A 357, 1143. Haerendel, G.: 1992, Nat. 360, 241. Haffner, L.M., Reynolds, R.J. and Tufte, S.L.: 1998, ApJ 501, L83. Kulsrud, R. and Pearce, W.: 1969, ApJ 156, 445. McIvor, I.: 1977, MNRAS 178, 85. Mestel, L. and Spitzer, L.: 1956, MNRAS 116, 503. Minter, A.H. and Spangler, S.R.: 1996, ApJ 458, 194. Minter, A.H. and Spangler, S.R.: 1997, ApJ 485, 182. Piddington, J.H.: 1956, MNRAS 116, 314. Reynolds, R.J., Haffner, L.M. Tufte, S. L.: 2000, in: J. Arthur, N. Brickhouse, and J. Franco (eds.), Astrophysical plasmas: Codes, Models and Observations, Rev. Mex. Astron. Astrof. (Serie de conferencias) Vol. 9, p. 249. Tagger, M., Falgarone, E. and Shukurov, A.: 1995, A&A 229, 940.0004-640X10.1023/B:ASTR.0000045012.41087.07https://hdl.handle.net/20.500.14352/50069International Workshop on Magnetic Fields and Star Formation, APR 21-25, 2003, Madrid, SPAINWe present the 2-D, two fluid ( ions + neutrals) numerical simulations that we are carrying out in order to study the ambipolar filamentation process, in which a magnetized, partially ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, and causes the ions and the magnetic flux to condense in the most ionized regions, resulting in a filamentary structure where initial ionization inhomogeneities are amplified. This mechanism might help to explain some features observed in magnetized and partially ionized astrophysical plasmas as the interstellar medium.engThe ambipolar filamentation in the warm ionized mediumjournal articlehttp://www.springerlink.com/content/w2x150550n3157m0/fulltext.pdfhttp://www.springerlink.com/open access52Turbulent magnetic-fieldswavesmagnetohydrodynamicsturbulenceISM : magnetic fieldsnumerical methodsAstronomía (Matemáticas)21 Astronomía y Astrofísica