Etayo Gordejuela, José JavierGromadzki, G.Martínez García, Ernesto2023-06-202023-06-202012Etayo Gordejuela, J. J., Gromadzki, G. & Martínez García, E. «On Real Forms of Belyi Surfaces With Symmetric Groups of Automorphisms». Mediterranean Journal of Mathematics, vol. 9, n.o 4, noviembre de 2012, pp. 669-75. DOI.org (Crossref), https://doi.org/10.1007/s00009-011-0140-x.1660-544610.1007/s00009-011-0140-xhttps://hdl.handle.net/20.500.14352/42223In virtue of the Belyi Theorem an algebraic curve can be defined over the algebraic numbers if and only if the corresponding Riemann surface can be uniformized by a subgroup of a Fuchsian triangle group. Such surfaces are known as Belyi surfaces. Here we study the actions of the symmetric groups S n on Belyi Riemann surfaces. We show that such surfaces are symmetric and we calculate the number of connected components of the corresponding real forms.engOn real forms of Belyi surfaces with symmetric groups of automorphismsjournal articlehttps//doi.org/10.1007/s00009-011-0140-xhttp://www.springerlink.com/content/a81554510r730123/fulltext.pdfrestricted access512.54Automorphisms of Riemann surfacesSymmetriesSingerman symmetriesOvalsFuchsian groupsBelyi surfacesReal formsGrupos (Matemáticas)