Sebastián Franco, José LuisMuñoz San Martín, SagrarioSancho Ruíz, MiguelMartínez López, GenovevaÁlvarez Galindo, Gabriel2023-06-202023-06-202011-07-28[1] R. Pethig, Biomicrofluidics 4, 022811 (2010). [2] M. Mischel, A. Voss, and H. A. Pohl, J. Biol. Phys. 10, 223 (1982). [3] W.M. Arnold and U. Zimmermann, J. Electrost. 21, 151 (1988). [4] A. Alazzam, D. Roman, V. Nerguizian, I. Stiharu, and R. Bhat, Microfluid. Nanofluid. 9, 1115 (2010). [5] A.K. Srivastava, M. Kim, S.M. Kim, M.-K. Kim, K. Lee, Y.H. Lee, M.-H. Lee, and S.H. Lee, Phys. Rev. E 80, 051702 (2009). [6] J.P. Huang, K.W. Yu, G.Q. Gu, and M. Karttunen, Phys. Rev. E 67, 051405 (2003). [7] S. Archer, H. Morgan, and F.J. Rixon, Biophys. J. 76, 2833 (1999). [8] C. Dalton, A.D. Goater, J.P.H. Burt, and H.V. Smith, J. Appl. Microbiol. 96, 24 (2004). [9] X.B. Wang, R. Pethig, and T.B. Jones, J. Phys. D 25, 905 (1992). [10] X.B. Wang, Y. Huang, R. Holzel, J.P.H. Burt, and R. Pethig, J. Phys. D 26, 312 (1993). [11] M.P. Hughes, X.B.Wang, F.F. Becker, P.R.C. Gascoyne, and R. Pethig, J. Phys. D 27, 1564 (1994). [12] T. Sun, H. Morgan, and N.G. Green, Phys. Rev. E 76, 046610 (2007). [13] M.P. Hughes, Phys. Med. Biol. 43, 3639 (1998). [14] M.P. Hughes, S. Archer, and H. Morgan, J. Phys. D 32, 1548 (1999). [15] J. Gimsa, R. Glaser, and G. Fuhr, in Physical Characterization of Biological Cells, edited by W. Schütt, H. Klinkmann, I. Lamprecht, and T.Wilson (Verlag Gesundheil GmbH, Berlin,1991), pp. 295–323. [16] R. Hölzel, J. Phys. D 26, 2112 (1993). [17] H.P. Schwan, Ferroelectrics 86, 205 (1988). [18] T.B. Jones, J. Electrost. 6, 69 (1979). [19] R. Paul and K.V.I.S. Kaler, Phys. Rev. E 48, 1491 (1993). [20] T.B. Jones, IEEE Eng. Med. Biol. Mag. 22, 33 (2003). [21] X.J. Wang, X.B. Wang, and P.R.C. Gascoyne, J. Electrost. 39, 277 (1997). [22] N.G. Green, A. Ramos, and H. Morgan, J. Electrost. 56, 235 (2002). [23] D.F. Chen, H. Du, W.H. Li, and C. Shu, J. Micromech. Microeng. 15, 1040 (2005). [24] C.H. Kua, Y.C. Lam, C. Yang, K. Youcef-Toumi, and I. Rodríguez, J. Electrost. 66, 514 (2008). [25] T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995). [26] U. Zimmermann and G.A. Nell, Electromanipulation of Cells (CRC Press, Boca Raton, FL, 1995). [27] E.R. Mognaschi and A. Savini, J. Phys. D 16, 1533 (1983). [28] Y.A. Chizmadzhev, P.I. Kuzmin, and V.P. Pastushenko, Biol. Membrany 2, 1147 (1985). [29] V.P. Pastushenko, P.I. Kuzmin, and Y.A. Chizmadzhev, Stud. Biophys. 110, 51 (1985). [30] V.P. Pastushenko, P.I. Kuzmin, and Y.A. Chizmadzhev, Biol. Membrany 5, 65 (1988). [31] T. Schnelle, R. Hagedorn, G. Fuhr, S. Fielder, and T. Muller, Biochim. Biophys. Acta 1157, 127 (1993). [32] F.A. Sauer, H. Frohlich, and F. Kremer, eds., Coherent Excitations in Biological Systems (Springer, Berlin, 1983). [33] F.A. Sauer and R.W. Schlögl, in Interactions Between Electromagnetic Fields and Cells, edited by A. Chiabrera, C. Nicolini, and H.P. Schwan (Plenum, New York, 1985), pp. 203–252. [34] J. Yang, Y. Huang, X.J. Wang, X.B. Wang, F.F. Becker, and P.R.C. Gascoyne, Biophys. J. 76, 3307 (1999). [35] J. Gimsa, T. Muller, T. Schnelle, and G. Fuhr, Biophys. J. 71, 495 (1996). [36] V.L. Sukhorukov and U. Zimmermann, J. Membr. Biol. 153, 161 (1996). [37] Y. Huang, X.B. Wang, F.F. Becker, and P.R.C. Gascoyne, BBA Biomembranes 1282, 76 (1996). [38] J. Gimsa, R. Glaser, and G. Fuhr, Stud. Biophys. 125, 71 (1988). [39] K. Maswiwat, M. Holtappels, and J. Gimsa, Electrochim. Acta 51, 5215 (2006). [40] K. Maswiwat, M. Holtappels, and J. Gimsa, ScienceAsia 33, 061 (2007). [41] A.M. Woodward and D.B. Kell, Bioelectrochem. Bioener. 24, 83 (1990). [42] M.D. Vahey and J. Voldman, Anal. Chem. 80, 3135 (2008). [43] R. Hölzel, Biophys. J. 73, 1103 (1997). [44] E. Vitols, R.J. North, and A.W. Linnane, J. Biophys. Biochem. Cytol. 9, 689 (1961). [45] C.W. Moore, R. del Valle, J. McKoy, A. Pramanik, and R.E. Gordon, Antimicrob. Agents Ch. 36, 2497 (1992). [46] J. Mulholland, D. Preuss, A. Moon, A. Wong, D. Drubin, and D. Botstein, J. Cell Biol. 125, 381 (1994). [47] J.L. Sebastián, S. Muñoz, M. Sancho, and G. Álvarez, Phys. Rev. E 78, 051905 (2008). [48] E. Prodan, C. Prodan, and J.H. Miller Jr., Biophys. J. 95, 4174 (2008). [49] A. Di Biasio and C. Cametti, Phys. Rev. E 82, 021917 (2010). [50] A. Di Biasio, L. Ambrosone, and C. Cametti, Phys. Rev. E 82, 041916 (2010). [51] M. Sancho, G. Martínez, and C. Martín, J. Electrost. 57, 143 (2003). [52] M. Sancho, G. Martínez, S. Muñoz, J. L. Sebastián, and R. Pethig, Biomicrofluidics 4, 022802 (2010). [53] D. B. Geselowitz, Biophys. J. 7, 1 (1967).1539-375510.1103/PhysRevE.84.011926https://hdl.handle.net/20.500.14352/43695© American Physical Society. The financial support of UCM—Santander to Bioelectromagnetism Research Group 910305, UCM—Santander Grant No. GR35/10-A-91056, and Comisión Interministerial de Ciencia y Tecnología Project No. FIS2008-00209 is gratefully acknowledgedWe use the Maxwell stress tensor to calculate the dielectrophoretic force and electrorotational torque acting on a realistic four-shelled model of the yeast Saccharomyces cerevisiae in a nonuniform rotating electric field generated by four coplanar square electrodes. The comparison of these results with numerical calculations of the dipolar and quadrupolar contributions obtained from an integral equation for the polarization charge density shows the effect of the quadrupole contribution in the proximity of the electrode plane. We also show that under typical experimental conditions the substitution of the multilayered cell by an equivalent cell with homogeneous permittivity underestimates the quadrupole contribution to the force and torque by 1 order of magnitude.engElectromechanical effects on multilayered cells in nonuniform rotating fieldsjournal articlehttp://pre.aps.org/pdf/PRE/v84/i1/e011926http://pre.aps.orgopen access53751-73Stress-Tensor MethodDielectrophoretic ForceElectric-FieldSaccharomyces-Cerevisiae.Física-Modelos matemáticosElectrónica (Física)Electricidad2202.03 Electricidad