Fernández Pérez, Luis AntonioGordillo Guerrero, A.Martín Mayor, VíctorRuiz Lorenzo, J. J.2023-06-202023-06-2020081. See e.g., G. Farisi, Field Theory, Disorder and Simulations, World Scientific 1994. 2. L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, Phys. Rev. Lett., 100, 057201 (2008). 3. E. Dagotto, Science, 309, 258 (2005) -- J. Burgy, et al, Phys. Rev. Lett., 87, 277202 (2001) -- ibid, 92, 097202 (2004) -- C. Sen, G. Álvarez, E. Dagotto, Phys. Rev. Lett., 98, 127202 (2007). 4. M. Aizenman, J. Wehr, Phys. Rev. Lett., 62, 2503 (1989) -- K. Hui, A.N. Berker, ibid, 62, 2507 (1989). 5. J. Cardy, J.L. Jacobsen, Phys. Rev. Lett., 79, 4063 (1997) -- ibid, Nucl. Phys. B, 515, 701 (1998). 6. F.Y. Wu, Rev. Mod. Phys., 54, 235 (1982). 7. H. Rieger, A.P. Young, J. Phys. A: Math. Gen., 26, 5279 (1993) -- J. Machta, M.E.J. Newman, L.B. Chayes, Phys. Rev. E, 62, 8782 (2000). 8. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, Phys. Rev. B, 61, 3215 (2000). 9. C. Chatelain, B. Berche, W. Janke, P-E. Berche, Phys. Rev. E, 64, 036120 (2001). 10. C. Chatelain, B. Berche, W. Janke, P-E. Berche, Nucl. Phys. B, 719, 275 (2005). 11. T. Nehaus, J.S. Hager, J. of Stat. Phys., 113, 47 (2003). 12. V. Martín-Mayor, Phys. Rev. Lett., 98, 137207 (2007). 13. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett., 58, 86 (1987). 14. D. Stauffer, A. Aharony, Introduction to the percolation theory, (Taylor and Francis, London 1984). 15. D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World-Scientific Singapore 2005. 16. L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, in preparation. 17. H.G. Ballesteros, et al., Nucl. Phys. B, 512, 681 (1998) -- ibid, Phys. Rev. B, 58, 2740 (1998). 18. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz-Sudupe, Phys. Lett. B, 378, 207 (1996) -- ibid, 387, 125 (1996).0094-243x10.1063/1.3033359https://hdl.handle.net/20.500.14352/51917© 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). This work has been partially supported by MEC through contracts No. FIS2004-0I399, FIS2006-08533-C03, FIS2007-60977 and by CAM and BSCH. Computer time was obtained at BIFI, UCM and UEx and (~ 50%) in the Mare Nostrum. The authors thankfully acknowledge the computer resources and technical expertise provided by the Barcelona Supercomputing Center.We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.engFirst Order Phase Transition in a 3D disordered systemjournal articlehttp://dx.doi.org/10.1063/1.3033359http://scitation.aip.org/open access5351-73Field ising-modelBond Potts modelsCritical exponentsCritical-behaviorMonte-Carlo.Física (Física)Física-Modelos matemáticos22 Física