Maestre Varea, DavidCremades Rodríguez, Ana IsabelGregorati, LucaPiqueras de Noriega, Javier2023-06-202023-06-202010-03-04(1) Ginely, D. S.; Bright, C. MRS Bull. 2000, 25, 15. (2) Sawada, M.; Higuchi, M.; Kondo, S.; Saka, H. Jpn. J. Appl. Phys. 2001, 40, 3332 (3) Kim, H.; Horwitz, J. S.; Kim, W. K.; Kafafi, Z. H.; Chrisey, D. B. J. Appl. Phys. 2002, 91, 5371. (4) Synowicki, R. A.; Hale, J. S.; Ianno, N. J.; Woollam, J. A. Surf.Coat. Technol. 1993, 62, 499. (5) Kalyanikutty, K. P.; Gundiah, G.; Edem, C.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2005, 408, 389. (6) Yu, D.; Wang, D.; Yu, W.; Qian, Y. Mater. Lett. 2004, 58, 84. (7) Li, S. Y.; Lee, C. Y.; Lin, P.; Tseng, T. Y. Nanotechnology 2005, 16, 451. (8) Wan, Q.; Feng, P.; Wang, T. H. Appl. Phys. Lett. 2006, 89, 123102. (9) Maestre, D.; Cremades, A.; Piqueras, J.; Gregoratti, L. J. Appl. Phys.2008, 103, 093531. (10) Jang, H. S.; Kim, D.-H.; Lee, H.-R.; Lee, S.-Y. Mater. Lett. 2005, 59, 1526. (11) Magdas, D. A.; Cremades, A.; Piqueras, J. Appl. Phys. Lett. 2006, 88, 113107. (12) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Nanosci. Nanotechnol. 2008, 8, 1. (13) Alema´n, B.; Ferna´ndez, P.; Piqueras, J. Appl. Phys. Lett. 2009, 95, 013111. (14) Hidalgo, P.; Liberti, E.; Rodriguez-Lazcano, Y.; Me´ndez, B.; Piqueras, J. J. Phys. Chem C 2009, 113, 17200. (15) Maestre, D.; Cremades, A.; Piqueras, J. Nanotechnology 2006, 17, 1584. (16) Strite, S.; Morkoc¸, H. J. Vac. Sci. Technol. B 1992, 10, 1237. (17) Guo, Q.; Kato, O.; Yoshida, A. J. Appl. Phys. 1993, 73, 7969. (18) O’Dwyer, C.; Szachowicz, M.; Visimberga, G.; Lavayen, V.; Newcomb, S. B.; Sotomayor Torres, C. M. Nat. Nanotechnol. 2009, 4, 239. (19) Kolmakov, A.; Potluri, S.; Barinov, A.; Mentes, T. O.; Gregoratti, L.; Nin˜o, M. A.; Locatelli, A.; Kiskinova, M. ACS Nano 2008, 2, 1993. (20) Magdas, D. A.; Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. Superlattices Microstruct. 2009, 45, 429. (21) Yan, Y. G.; Zhang, Y.; Zeng, H. B.; Zhang, L. D. Cryst. Growth Des. 2007, 7, 940. (22) Ortega, Y.; Ferna´ndez, P.; Piqueras, J. J. Cryst. Growth 2009, 311, 3231. (23) Wen, J. G.; Lao, J. Y.; Wang, D. Z.; Kyaw, T. M.; Foo, Y. L.; Ren, Z. F. Chem. Phys. Lett. 2003, 372, 717. (24) Gonza´lez, C. B.; Mason, T. O.; Quintana, J. P.; Warschkow, O.; Ellis, D. E.; Hwang, J. H.; Hodges, J. P.; Jorgensen, J. D. J. Appl. Phys. 2004, 96, 3912. (25) Popovic, J.; Tkalcec, E.; Grzeta, B.; Goebbert, C.; Ksenofontov, V.; Takeda, M. Z. Kristallogr. Suppl. 2007, 26, 489. (26) Frank, G.; Ko¨stlin, H. Appl. Phys. A: Mater. Sci. Process. 1982, 27, 197. (27) Li, S.; Lee, C. Y.; Lin, P.; Tseng, T. Y. Nanotechnology 2005, 16, 451. (28) Han, H.; Zoo, Y.; Bhagat, S. K.; Lewis, J. S.; Alford, T. L. J. Appl. Phys. 2007, 102, 063710. (29) Kim, S. Y.; Hong, K.; Lee, J. L.; Choi, K. H.; Song, K. H.; Ahn, K. C. Solid-State Electron. 2008, 52, 1. (30) Kim, J. S.; Ho, P. K. H.; Thomas, D. S.; Friend, R. H.; Cacialli, F.; Bao, G. W.; Li, S. F. Y. Chem. Phys. Lett. 1999, 315, 307. (31) Fan, J. C. C.; Goodenough, J. B. J. Appl. Phys. 1977, 48, 3524. (a) El Hichou, A.; Kachouane, A.; Bubendorf, J. L.; Addou, M.; Rbothe, J.; Troyon, M.; Bougrine, A. Thin Solid Films 2004, 458, 263. (32) Kundu, S.; Biswas, P. K. Chem. Phys. Lett. 2005, 414, 107.1932-744710.1021/jp911881shttps://hdl.handle.net/20.500.14352/43992©2010 American Chemical Society. This work was supported by MEC Project No. MAT2006-01259.Mixtures of InN and SnO2 powders, with it weight ratio of 10:1, have been used as precursors for the thermal growth of arrow-shaped and other elongated micro- and nanostructures of indium-tin oxide (ITO) containing about 2.6 atom % of Sit. The temperatures used in the process, in the range 650-750 degrees C, favor the decomposition of InN and oxidation of In, with it limited incorporation of Sit in the resulting compound. Arrow-shaped indium-tin oxide structures are obtained and formation of stannates during the process is avoided. X-ray photoelectron spectroscopy indicates that tin incorporates into the In2O3 lattice mainly as Sn4+. Luminescence of the ITO microstructures has been studied by cathodoluminescence in the scanning electron microscope.engIndium Tin Oxide micro- and nanostructures grown by thermal treatment of InN/SnO2journal articlehttp://pubs.acs.org/doi/abs/10.1021/jp911881shttp://pubs.acs.orgrestricted access538.9Defect StructureIto NanowiresThin-FilmsNanorodsSpectroscopyTemperatureSurfaceLayersFísica de materiales