Relaño Pérez, Armando2023-06-202023-06-202008-06-06[1] M.V. Berry and M. Tabor, Proc. R. Soc. A 356, 375 (1977). [2] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [3] I. C. Percival, J. Phys. B 6, L229 (1973); M.V. Berry, J. Phys. A 10, 2083 (1977). [4] M.V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984). [5] S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994). [6] T. Prosen and M. Robnik, J. Phys. A 27, 8059 (1994). [8] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981). [9] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [10] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [11] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005) [12] M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005). [13] M. Robnik, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, 1849 (2006). [14] A. M. García García, Phys. Rev. E 73, 026213 (2006). [15] C. Male, G. Le Caër, and R. Delannay, Phys. Rev. E 76, 042101 (2007). [16] F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 (1996). [17] V. A. Podolskiy and E. E. Narimanov, Phys. Rev. Lett. 91, 263601 (2003). [18] G. Vidmar, H.-J. Stöickmann, M. Robnik, U. Kuhl, R. Höhmann, and S. Grossmann, J. Phys. A 40, 13883 (2007). [19] V. A. Podolskiy and E. E. Narimanov, Phys. Lett. A 362, 412 (2007). [20] A. Bäcker, R. Ketzmerick, S. Löck, and L. Schilling, arXiv:0707.0217 [21] A. Bäcker, R. Ketzmerick, and A. G. Monastra, Phys. Rev. E 75, 066204 (2007). [22] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, Phys. Rev. E 66, 036209 (2002).0031-900710.1103/PhysRevLett.100.224101https://hdl.handle.net/20.500.14352/51267© 2008 The American Physical Society. This work was supported by Grants No. FIS2006-12783-C03-01 from Ministerio de Educación y Ciencia of Spain, and No. CCG07-CSIC/ESP-1962 from Comunidad de Madrid and CSIC. The author is supported by the Spanish program ‘‘Juan de la Cierva’’.It has been shown that the spectral fluctuations of different quantum systems are characterized by 1/ƒ^(α) noise, with 1 </= "alpha" </= 2, in the transition from integrability to chaos. This result is not well understood. We show that chaos-assisted tunneling gives rise to this power-law behavior. We develop a random matrix model for intermediate quantum systems, based on chaos-assisted tunneling, and we discuss under which conditions it displays 1/ƒ^(α) noise in the transition from integrability to chaos. We conclude that the variance of the elements that connect regular with chaotic states must decay with the difference of energy between them. We compare the characteristics of the transition modeled in this way with what is obtained for the Robnik billiard.engChaos-assisted tunneling and 1/ƒ^(α) spectral fluctuations in the order-chaos transitionjournal articlehttp://dx.doi.org/10.1103/PhysRevLett.100.224101http://journals.aps.org/open access536Random-MatrixLevelTermodinámica2213 Termodinámica