Díaz-Guerra Viejo, CarlosPiqueras de Noriega, JavierCastaldini, A.Cavallini, A.Polent, L.2023-06-202023-06-202003-12-151. S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, Mater. Sci. Eng., R. 30, 55 (2000). 2. H. Morkoc¸, Mater. Sci. Eng., R. 33, 135 (200). 3. D. C. Look and R. J. Molnar, Appl. Phys. Lett. 70, 3377 (1997). 4. F. A. Ponce, D. P. Bour, W. Go¨tz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996). 5. M. Herrera Zaldı´var, P. Ferna´ndez, and J. Piqueras, J. Appl. Phys. 83, 2796 (1998). 6. X. Zhang, D. H. Rich, J. Y. Kobayashi, N. P. Kobayashi, and P. D. Dapkus, Appl. Phys. Lett. 73, 1430 (1998). 7. S. J. Chung, M. S. Jeong, O. H. Cha, C.-H. Hong, E.-K. Shu, H. J. Lee, Y. S. Kim, and B. H. Kim, J. Appl. Phys. 89, 5454 (2001). 8. A. Castaldini, A. Cavallini, L. Polenta, and G. Salviati, Solid State Phenom. 78–79, 95 (2001). 9. C. K. Sun et al., Opt. Quantum Electron. 32, 619 (2000). 10. X. Li and J. J. Coleman, Appl. Phys. Lett. 69, 1605 (1996). 11. Y. Koide, D. E. Walker, B. D. White, L. J. Brillson, M. Murakami, S. Kamiyama, H. Amano, and I. Akasaki, J. Appl. Phys. 92, 3657 (2002). 12. A. Urbieta, P. Ferna´ndez, J. Piqueras, Ch. Hardalov, and T. Sekiguchi, J. Phys. D 34, 2945 (2001). 13. A. Castaldini, A. Cavallini, and L. Polenta, Mater. Res. Soc. Symp. Proc. 588, 51 (2001). 14. M. Avella, E. de la Puente, J. Jime´nez, A. Castaldini, A. Cavallini, and L. Polenta, J. Cryst. Growth 210, 220 (2000). 15. A. K. Viswanath, E. Shin, J. I. Lee, S. Yu, D. Kim, B. Kim, Y. Chi, and C. Hong, J. Appl. Phys. 83, 2272 (1998). 16. J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pong, C. Y. Chen, C. N. Huang, and W. C. Chen, J. Appl. Phys. 84, 4590 (1998). 17. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999). 18. M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, Phys. Rev. B 59, 13176 (1999). 19. F. Shahedipour and B. W. Wessels, Appl. Phys. Lett. 76, 3011 (2000). 20. E. Oh, H. Park, and Y. Park, Appl. Phys. Lett. 72, 70 (1998). 21. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996). 22. K. Saarinen et al., Phys. Rev. Lett. 79, 3030 (1997). 23. C. G. Van de Walle, C. Stampfl, and J. Neugebauer, J. Cryst. Growth 189–190, 505 (1998). 24. G. Salviati et al., MRS Internet J. Nitride Semicond. Res. 5S1, W11.50 (2000). 25M. W. Bayerl et al., Phys. Rev. B 63, 125203 (2001). 25. M. W. Bayerl et al., Phys. Rev. B 63, 125203 (2001). 26. S. J. Chung, O. H. Cha, H. K. Cho, M. S. Jeong, C.-H. Hong, E.-K. Suh, and H. J. Lee, Mater. Res. Soc. Symp. Proc. F99, W11.83 (2000). 27. W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, Appl. Phys. Lett. 68, 667 (1996). 28. J. W. Huang, T. F. Kuech, H. Lu, and I. Bhat, Appl. Phys. Lett. 65, 2392 (1996). 29. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakris-nan, and B. Santic, Phys. Rev. B 59, 5561 (1999). 30. M. Herrera Zaldı´var, P. Ferna´ndez, J. Piqueras, and J. Solı´s, J. Appl. Phys. 85, 1120 (1999). 31. Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, J. Appl. Phys. 82, 2707 (19979. 32. S. G. Lee and K. J. Chang, Semicond. Sci. Technol. 14, 138 (1999). 33. P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, Appl. Phys. Lett. 68, 1362(1996). 34. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965. 35. F. Shahedipour and B. W. Wessels, MRS Internet J. Nitride Semicond. Res. 6, 12 (2001). 36. J. M. Myoung, K. H. Shim, C. Kim, O. Gluschenov, K. Kim, S. Kim, D. A. Turnbull, and S. G. Bishop, Appl. Phys. Lett. 69, 2722 (1996). 37. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 19849, pp. 297–299.0021-897910.1063/1.1628832https://hdl.handle.net/20.500.14352/51150© 2003 American Institute of Physics. The authors wish to thank D. C. Look, H. Morkoc¸, and J. van Nostrand for providing the investigated material. This work has been partially supported by MCYT through Project No. MAT2000-2119.The electronic recombination properties of Mg-doped GaN have been investigated by steady state and time-resolved cathodoluminescence (TRCL) in the scanning electron microscope, photocurrent (PC) spectroscopy, and optical beam induced current (OBIC). CL and OBIC maps reveal an inhomogeneous recombination activity in the investigated material. Deep levels giving rise to level-to-band transitions were detected by PC spectroscopy. A large PC quenching observed upon illumination with light of (2.65-2.85) eV is tentatively attributed to metastable traps within the band gap. CL spectra reveal the existence of emission bands centered at 85 K at 3.29, 3.20, 3.15, and 3.01 eV, respectively. Both time-resolved and steady-state CL measurements carried out under different excitation conditions indicate that the 3.15 and 3.01 eV emissions are likely related to donor-acceptor pair transitions. TRCL measurements also reveal different recombination kinetics for these bands and suggest that deep donors are involved in the mechanism responsible for the 3.01 eV emission.engDefect assessment of Mg-doped GaN by beam injection techniquesjournal articlehttp://dx.doi.org/10.1063/1.1628832http://scitation.aip.orgopen access538.9Chemical-Vapor-DepositionP-Type GanPhotoluminescence BandsYellow LuminescenceCathodoluminescenceFilmsPhotoconductivitySpectroscopyIrradiationVacanciesFísica de materiales