Junge, M.Pérez García, DavidPalazuelos Cabezón, CarlosVillanueva Díez, IgnacioWolf, Michael2023-06-202023-06-202009Junge, M., Pérez García, D., Palazuelos Cabezón, C. et al. «Operator Space Theory: A Natural Framework for Bell Inequalities». Physical Review Letters, vol. 104, n.o 17, abril de 2010, p. 170405. DOI.org (Crossref), https://doi.org/10.1103/PhysRevLett.104.170405.0031-900710.1103/PhysRevLett.104.170405https://hdl.handle.net/20.500.14352/49542Short (non-technical) versionIn this letter we show that the field of Operator Space Theory provides a general and powerful mathematical framework for arbitrary Bell inequalities, in particular regarding the scaling of their violation within quantum mechanics. We illustrate the power of this connection by showing that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $\frac{\sqrt{n}}{\log^2n}$ when observables with n possible outcomes are used. Applications to resistance to noise, Hilbert space dimension estimates and communication complexity are given.engOperator Space theory: a natural framework for Bell inequalitiesjournal article1079-7114https//doi.org/10.1103/PhysRevLett.104.170405http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.170405open access530.145Teoría cuánticaQuantum PhysicsFísica matemáticaTeoría de los quanta2210.23 Teoría Cuántica