Fasano, A.Herrero, Miguel A.Rodrigo, Marianito R.2023-06-202023-06-202009-070025-556410.1016/j.mbs.2009.04.001https://hdl.handle.net/20.500.14352/42287This work is concerned with a reaction-diffusion system that has been proposed as a model to describe acid-mediated cancer invasion. More precisely, we consider the properties of travelling waves that can be supported by such a system, and show that a rich variety of wave propagation dynamics, both fast and slow, is compatible with the model. In particular, asymptotic formulae for admissible wave profiles and bounds on their wave speeds are provided.engSlow and fast invasion waves in a model of acid-mediated tumour growthjournal articlehttp://www.sciencedirect.com/science/article/pii/S0025556409000698http://www.sciencedirect.comrestricted access519.87616-00651-76Reaction-diffusion systemsTumour growthAsymptotic methodsMathematical biologyCancer-cell invasionh+-ion mobilitymalignant invasionventricular myocyteexcitable mediadiffusiontissueBiomatemáticasOncologíaInvestigación operativa (Matemáticas)2404 Biomatemáticas3201.01 Oncología1207 Investigación Operativa